• Title/Summary/Keyword: Network scheduling

Search Result 945, Processing Time 0.026 seconds

Distributed opportunistic packet scheduling for wireless ad-hoc network (무선 에드혹 네트워크에서 분산화된 opportunistic 패킷스케줄링)

  • Park, Hyung-Kun;Yu, Yun-Seop
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.204-206
    • /
    • 2009
  • Opportunistic scheduling is one of the important techniques to maximize multiuser diversity gain. In this paper, we propose a distributed opportunistic scheduling scheme for ad-hoc network. In the proposed distributed scheduling scheme, each receiver estimates channel condition and calculates independently its own priority with probabilistic manner, which can reduce excessive probing overhead required to gather the channel conditions of all receivers. We evaluate the proposed scheduling using extensive simulation and simulation results show that proposed scheduling obtains higher network throughput than conventional scheduling schemes and has a flexibility to control the fairness and throughput by controlling the system parameter.

  • PDF

Evaluation Of The Content-Based Packet Scheduling Policies On The Multithreaded Multiprocessor Network System

  • Yim Kangbin
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.39-41
    • /
    • 2004
  • In this paper, I propose a thread scheduling policy for faster packet processing on the network processors with multithreaded multiprocessor architecture. To implement the proposed policy, I derived several basic parameters related to the thread scheduling and included a new parameter representing the packet contents and the features of the multithreaded architecture. Through the empirical study using a network processor, I proved the proposed scheduling ploicy provides better throughput and load balancing compared to the generally used thread scheduling policy.

  • PDF

Worst-case Guaranteed Scheduling Algorithm for HR-WPAN (HR-WPAN을 위한 Worst-case Guaranteed Scheduling Algorithm)

  • Kim, Je-Min;Lee, Jong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.270-276
    • /
    • 2007
  • The proposed LDS(Link-status Dependent Scheduling) algorithm in HR-WPAN(High Rate-Wireless Personal Area Network) up to now aims at doing only throughput elevation of the whole network, when the crucial device is connected with worst-link relatively, throughput of this device becomes aggravation. The proposed the WGS(Worst-case Guaranteed Scheduling) algorithm in this paper guarantees throughput of the device which is connected with worst-link in a certain degree as maintaining throughput of all devices identically even if a link-status changes, decreases delay of the whole network more than current LDS algorithm. Therefore proposed WGS algorithm in this paper will be useful in case of guaranteeing throughput of a device which is connected worst-link in a certain degree in a design of HR-WPAN hereafter.

The Performance Analysis of CPU scheduling Algorithms in Operating Systems

  • Thangakumar Jeyaprakash;Ranjana P;Sambath M
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.165-170
    • /
    • 2023
  • Scheduling algorithms plays a significant role in optimizing the CPU in operating system. Each scheduling algorithms schedules the processes in the ready queue with its own algorithm design and its properties. In this paper, the performance analysis of First come First serve scheduling, Non preemptive scheduling, Preemptive scheduling, Shortest Job scheduling and Round Robin algorithm has been discussed with an example and the results has been analyzed with the performance parameters such as minimum waiting time, minimum turnaround time and Response time.

A Divided Scheduling Method based on Structural Characteristics in Wireless

  • Yoshino, Yuriko;Hashimoto, Masafumi;Wakamiya, Naoki
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.149-154
    • /
    • 2016
  • Wireless mesh networks (WMNs) are used for metropolitan area network that requires high network throughput for handling many users. TDMA-based access is a common solution for this problem and several scheduling methods have been proposed. However, existing heuristic methods have room for improvement at network throughput although they are low complexity. In this paper, we propose a novel divided scheduling method based on structural characteristics in order to improve network throughput in WMNs. It separately schedules neighbor links of gateways and that of the other links by different scheduling algorithms. Simulation-based evaluations show that our proposal improves up to 14% of network throughput compared with conventional scheduling algorithm script.

Intelligent FMC Scheduling Utilizing Neural Network and Expert System (신경회로망과 전문가시스템에 의한 FMC의 지능형 스케쥴링)

  • 박승규;이창훈;김유남;장석호;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.651-657
    • /
    • 1998
  • In this study, an intelligent scheduling with hybrid architecture, which integrates expert system and neural network, is proposed. Neural network is trained with the data acquired from simulation model of FMC to obtain the knowledge about the relationship between the state of the FMC and its best dispatching rule. Expert system controls the scheduling of FMC by integrating the output of neural network, the states of FMS, and user input. By applying the hybrid system to a scheduling problem, the human knowledge on scheduling and the generation of non-logical knowledge by machine teaming, can be processed in one scheduler. The computer simulation shows that comparing with MST(Minimum Slack Time), there is a little increment in tardness, 5% growth in flow time. And at breakdown, tardness is not increased by expert system comparing with EDD(Earliest Due Date).

  • PDF

Development of an Extended EDS Algorithm for CAN-based Real-Time System (CAN기반 실시간 시스템을 위한 확장된 EDS 알고리즘 개발)

  • Lee, Byong-Hoon;Kim, Dae-Won;Kim, Hong-Ryeol
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2369-2373
    • /
    • 2001
  • Usually the static scheduling algorithms such as DMS (Deadline Monotonic Scheduling) or RMS(Rate Monotonic Scheduling) are used for CAN scheduling due to its ease with implementation. However, due to their inherently low utilization of network media, some dynamic scheduling approaches have been studied to enhance the utilization. In case of dynamic scheduling algorithms, two considerations are needed. The one is a priority inversion due to rough deadline encoding into stricted arbitration fields of CAN. The other is an arbitration delay due to the non-preemptive feature of CAN. In this paper, an extended algorithm is proposed from an existing EDS(Earliest Deadline Scheduling) approach of CAN scheduling algorithm haying a solution to the priority inversion. In the proposed algorithm, the available bandwidth of network media can be checked dynamically by all nodes. Through the algorithm, arbitration delay causing the miss of their deadline can be avoided in advance. Also non real-time messages can be processed with their bandwidth allocation. The proposed algorithm can achieve full network utilization and enhance aperiodic responsiveness, still guaranteeing the transmission of periodic messages.

  • PDF

Effect of Representation Methods on Time Complexity of Genetic Algorithm based Task Scheduling for Heterogeneous Network Systems

  • Kim, Hwa-Sung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.35-53
    • /
    • 1997
  • This paper analyzes the time complexity of Genetic Algorithm based Task Scheduling (GATS) which is designed for the scheduling of parallel programs with diverse embedded parallelism types in a heterogeneous network systems. The analysis of time complexity is performed based on two representation methods (REIA, REIS) which are proposed in this paper to encode the scheduling information. And the heterogeneous network systems consist of a set of loosely coupled parallel and vector machines connected via a high-speed network. The objective of heterogeneous network computing is to solve computationally intensive problems that have several types of parallelism, on a suite of high performance and parallel machines in a manner that best utilizes the capabilities of each machine. Therefore, when scheduling in heterogeneous network systems, the matching of the parallelism characteristics between tasks and parallel machines should be carefully handled in order to obtain more speedup. This paper shows how the parallelism type matching affects the time complexity of GATS.

  • PDF

Acquisition and Refinement of State Dependent FMS Scheduling Knowledge Using Neural Network and Inductive Learning (인공신경망과 귀납학습을 이용한 상태 의존적 유연생산시스템 스케쥴링 지식의 획득과 정제)

  • 김창욱;민형식;이영해
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.2
    • /
    • pp.69-83
    • /
    • 1996
  • The objective of this research is to develop a knowledge acquisition and refinement method for a multi-objective and multi-decision FMS scheduling problem. A competitive neural network and an inductive learning algorithm are integrated to extract and refine necessary scheduling knowledge from simulation outputs. The obtained scheduling knowledge can assist the FMS operator in real-time to decide multiple decisions simultaneously, while maximally meeting multiple objective desired by the FMS operator. The acquired scheduling knowledge for an FMS scheduling problem is tested by comparing the desired and the simulated values of the multiple objectives. The result show that the knowledge acquisition and refinement method is effective for the multi-objective and multi-decision FMS scheduling problems.

  • PDF

Stability and a scheduling method for network-based control systems (네트워크를 이용한 제어 시스템의 안정도 및 스케줄링에 관한 연구)

  • 김용호;권욱현;박홍성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1432-1435
    • /
    • 1996
  • This paper obtains maximum allowable delay bounds for stability of network-based control systems and presents a network scheduling method which makes the network-induced delay be less than the maximum allowable delay bound. The maximum allowable delay bounds are obtained using the Lyapunov theorem. Using the network scheduling method, the bandwidth of a network can be allocated to each node and the sampling period of each sensor and controller can be determined. The presented method can handle three kinds of data (periodic, real-time asynchronous, and non real-time asynchronous data) and guarantee real-time transmissions of real-time synchronous data and periodic data, and possible transmissions of non real-time asynchronous data. The proposed method is shown to be useful by examples in two types of network protocols such as the token control and the central control.

  • PDF