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Acquisition and Refinement of State
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ABSTRACT

The objective of this research is to develop a knowledge acquisition and refinement method for a multi-
objective and multi-decision FMS scheduling problem. A competitive neural network and an inductive learning
algorithm are integrated to extract and refine necessary scheduling knowledge from simulation outputs.
The obtained scheduling knowledge can assist the FMS operator in real-time to decide multiple decisions
simultaneously, while maximally meeting multiple objectives desired by the FMS operator. The acquired
scheduling knowledge for an FMS scheduling problem is tested by comparing the desired and the simulated
values of the multiple objectives. The result shows that the knowledge acquisition and refinement method

is effective for the multi-objective and multi-decision FMS scheduling problems.
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1. Introduction

Flexible manufacturing systems (FMSs) have been applied to increase the flexibility and the productivity
of various discrete part manufacturing. These highly integrated systems are becoming more complex, hence
difficult to control situations that cause several simultaneous decision problems. In particular, the scheduling
task of FMS, the control problem during the operation, is much more complex than transfer lines because
of simultaneous machining and alternative routing of different part types. In general, the scheduling task
of FMS involves several real-time operation decisions such as the selection of machine by part, selection
of part by machine, selection of part by material handling system, and so on. Good scheduling method
must be able to successfully control the early and late completion of parts, hold minimum work-in-process,
and highly utilize resources. In addition, if a computer-aided method is used for the scheduling, it must
be run often and fast. These requirements often dictate a simplistic scheduling model that trades off solution

time for realism and solution quality.

The objective of the paper is to develop an acquisition and refinement method of FMS scheduling knowledge.
The scheduling knowledge is constructed such that the FMS operator can decide the multi-decision variables
timely, and yet maximally meet the multiple relative objectives. For the knowledge acquisition and refinement
method for the multi-objective and multi-decision FMS scheduling problem, the applicability of a competitive
neural network and an inductive learning algorithm is investigated. By incorporating the competitive neural
network, the inductive learning algorithm, and a simulation, a knowledge-based FMS scheduler is built up.
It can control the behavior of part flows to accomplish the multiple relative objectives by generating the
best decision rules. Moreover, the knowledge-based FMS scheduler has the ability to respond in real-time
in the sense that the scheduler suggests good decision rules in a few seconds whenever the FMS operator
inputs the multiple relative objectives.

The remainder of this paper is organized as follows. Previous scheduling methods using artificial intelligence
techniques are reviewed in Section 2. In Section 3, the multi-objective FMS scheduling problem is formally
defined, and an FMS simulation scenario is explained. The scenario is used later in this paper to investigate
the effectiveness of the proposed knowledge acquisition and refinement method. In Section 4 and 5, the
neural network model and the inductive learning are presented, respectively. Finally, the results of the

simulation and the conclusions of this research are discussed in Section 6.

II. Previous Artificial Intelligence Approaches to Scheduling
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The applications of expert systems to FMS scheduling problems have drawn a great deal of interest
over the last fifteen years. Numerous studies have been published in recent years because it gives fast
and acceptable solutions, although not guaranteeing optimal solutions (Shaw, 19895 Yih, 1990). The main
idea behind the applications of expert systems to FMS scheduling problems is that each scheduling system
is unique to a given environment and, therefore, a wide variety of technical knowledge and expertise should
be taken into account in solving these scheduling problems.

However, despite the advantage of the expert system technique, few applications have been reported
in real FMS scheduling due to the difficulty of knowledge acquisition by human experts (Fox, 1990). The
behavior of most FMSs is so complex that it is unrealistic to find good scheduling knowledge unless the
system is quite simple, or running over a long period enough to represent the best scheduling knowledge.
To overcome this disadvantage, some researchers applied the search algorithms of artificial intelligence
to automatically find the scheduling knowledge of a given job shop problem (Fox and Smith, 1984 ; Sadeh
et al. 1995). However, their approaches cannot be applied to real-time FMS scheduling problems because
their algorithms require immoderate computational times.

Compared to the expert system technique, the neural network models do not require the knowledge
acquisition phase. Instead, they implicitly acquire necessary scheduling knowledge through a training phase.
In the training phase, the weighting vectors of neural network is adjusted such that the inputs produces
the right outputs (Bharath and Drosen, 1994). Due to the advantage of the implicit knowledge acquisition,
many researchers have applied the neural network models to FMS scheduling (Chryssolouris et al. 1991 ;
Nygard et al. 1991 ¢ Yih et al. 1991+ Sim et al. 1994).

The main problem with using neural network models is that the acquired knowledge through the training
phase cannot be explicitly represented. Thus, it is difficult to modify the knowledge if necessary. Knowledge
modification is often demanded because the state of FMS continuously changes.

Recently, an inductive learning algorithm called ID3 (Quinlan, 1986), one of machine learning techniques,
has been applied for inducing scheduling knowledge from a limited set of scheduling knowledge (Shaw
et al. 1990 5 Shaw et al. 1992). The limited set of scheduling knowledge is called examples, which are usually
obtained from simulation outputs. Each of the examples include attribute values and a pre-defined class.
Attributes are used to describe the characteristics of an example. A class is defined as the group to which
examples with similar characteristics are assigned. The class in FMS scheduling, for example, can be the
best dispatching rule for a given set of FMS attributes. The inductive learning method infers the concept
of a class from the examples of the class. The concept can be represented either by a rule or a decision
tree.

The main disadvantage of inductive learning is that the classes to which examples are assigned must

be pre-defined. For example, for a given set of FMS attributes, the best dispatching rule (class) can be
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selected after a simulation is run for each dispatching rule. This process becomes an intolerable time-consu-
ming task as the number of attributes is large.

To resolve the above problem, we first apply a competitive neural network model to identify classes,
then feed the result of the competitive neural network to an inductive learning software called C4.5 (Quinlan,
1993). The C4.5 implements an advanced version of Quinlan’s ID3 algorithm for refining and generating
rule-based scheduling knowledge. From the next section, our proposed solution approach is explained in

detail.

HI. Multi-objective FMS Scheduling Problem

3.1. The scheduling problem

To define the scheduling problem dealt with in this paper formally, we formulate the problem as fol-

lows -
Minimization ,%sl s—s% | +}; %P |

S.T. Routing sequences of all parts
vveV, k=1 2., D

In the above formulation, w is the %k th decision variable, which can take one of its candidate decision
rules. A decision variable is a decision point which is determined by the FMS operator or computer. For
instance, whenever a machine completes the processing of a part and is ready to process the waiting parts,
the machine should select the next processing part among the waiting parts. This decision variable is called
the selection of part by machine (or dispatching decision). V, is the set of candidate decision rules of w,
and D is the number of decision variables. S and P denote the set of system status variables and the
set of performance measures, respectively. s%; is the desired average value of the ith system status variable
at the end of production interval ¢, and s°, is the actual average value of the ith system status variable
at the end of production interval £. A production interval may be a day or a month depending on the operational
strategy of the company. In the same way, p%; and p*, are the desired and actual average values of the
jth performance measure at the end of production interval ¢, respectively. Hereafter, we often use the term

evaluation criterion to designate a system status variable or a performance measure. The operational scenario



AFAZAGT AdeES ol 83 e gEF KAWL 2AEH AN 57 FA 73

of the FMS is as follows: the desired value of each evaluation criterion is provided by the FMS operator
at the beginning of the next production interval. More specifically, for each evaluation criterion, the FMS
operator gives the scheduler the difference (change) between the actual average value of the evaluation
variable at the end of the current production interval and the desired average value of the evaluation criterion
at the end of the next production interval. Then the scheduler provides the operator with a good decision
rule for each decision variable at the beginning of the next production interval. In this research, the difference

is called relative objective value.

3.2. The FMS scenario

The FMS studied in this research emulates a Mazak FMS. The model chosen for simulation consists
of four machining centers, a washing machine, thirty nine work-in-process storage racks, and a crane for
material handling. Figure 1 shows the system. Each machining center has one input and one output buffer.
In addition, each machining center has several interchangeable tool magazines in order to process various '
operations by mounting different tool magazines. Therefore, the Mazak system has great routing flexibility.
This also implies that scheduling problems in such a system are much more complex.

In this study, we assume that the Mazak system has existing policies for tool management. Alternative
machine options exist for various operation types. A crane is assigned for transporting parts among machine
centers, loading/unloading station and work-in-process storage racks. The parts are transferred by the crane
with a speed of 70 feet/min. on the rail and of 20 feet/min. vertically at the storage rack area. When the
crane completes the transfer, it either stays at the same station or goes to the designated station depending

on the control policy.
Racks for work-in-process

vy
station

/] ™\
| —— crane f— ]

i o0 fdf i 0

Washing
machine

M/C 1 M/C 2 M/C 3 M/C 4

Fig. 1. Configuration of the experimental FMS
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Five types of part are processed in the FMS, and each part type can be processed by several flexible
routing sequences. The routing sequences and machining times at each alternative machine for each part
type are listed in Table 1. Also, it is assumed that the inter-arrival times of all parts are exponentially
distributed, but if there are too many parts waiting in the racks or loading/unloading station, the arrived
parts will not be allowed to enter into the FMS until a rack is free. In this case study, four decision variables

are used.

Table 1. Input data of the simulation

. Machining time (min./part) on alternative machine
Part type | Operation Number
1 2 3 4 WM Avg. Total
1 21 23 22 18 - 21
2 14 - 15 20 - 16.3 60.3
! 3 15 - 11 13 - 13
4 - - - - 10 10
1 13 9 - - - 11
2 - 16 - 24 - 20 69.3
2 3 8 - 9 12 - 9.7
4 20 18 16 19 - 18.3
5 - - - - 10 10
1 11 - 10 14 - 11.7
2 21 20 - - - 20.5 61.2
3 3 - 17 - 21 - 19
4 - - - - 10 10
1 12 - 13 9 - 11.3
2 - 18 - 21 - 19.5
3 20 16 - - - 18 94.1
4 4 24 20 19 22 - 213
5 12 - 16 - - 14
6 - - - - 10 10
1 - 18 - 19 - 18.5
2 18 19 17 16 - 17.5 59
> 3 10 - 15 14 - 13
4 - - - - 10 10

The simulation model of the Mazak FMS is developed by the FORTRAN based SLAM II simulation language.
A long simulation period is divided into many short production intervals. In each production interval, we

apply a random combination of decision rules, thereby obtaining system status and performance measure
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data at the end of each production interval. The same procedure is applied in the next production interval.
After two production intervals end, the differences of the evaluation criteria between.the two intervals are
collected together with the two sets of decision rules. Then the differences and the two sets of decision
rules are collected as an input vector for training the neural network. The length of each production interval

is set to 480 minutes and 3500 input data are collected.

3.3. Decision variables and evaluation criteria

The definition of each decision variable and associated decision rules is given in Table 2. In an FMS,
changing the scheduling rules in real time will have an effect on the system status and performance measures.
There are numerous criteria that can be used in evaluating the system performance and system status
of the FMS. Some of these are based on completion-times, some on due-dates, and some on the inventory
and processing times. In this study, we select three performance measures : (1) mean Tardiness, (2) maximum

Tardiness, (3) mean flow time, and two system status variable . (1) slack and (2) crane utilization.

Table 2. Decision variables and associated decision rules

Decision variable Associated rules

Selection of machine by part . FW]JM - fewest waiting jobs for a machine
CYC - cyclic priority
. LAUF - lowest average utilization first

SFTO - shortest flow time at an operation

Selection of rack by part . SDR - shortest distance to rack

SDMR - shortest distance to the nearest rack from a machine
of next operation

. RANDOM - random selection

Selection of part by machine . SIO - shortest imminent processing time
FCFS - first come and first serve
. SRPT - shortest remaining processing time

EDD - earliest due date

Selection of part by crane SDP - shortest distance to part
SRPT - shortest remaining processing time
EDD - earliest due date

. MSLACK - minimum slack

R IR N CR ORI (8
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V. Knowledge Acquisition : A Competitive Neural Network App-
roach

For the knowledge acquisition of multi-objective FMS scheduling problem, a competitive neural network
is applied. The competitive network can learn to detect regularities and correlations in its input vectors
(patterns) and adapt future responses to the input vectors accordingly. Figure 2 depicts the architecture
of the competitive neural network applied to classify the outputs of the simulation. A class contains a set
of input vectors, some outputs of the simulation which shows the similar differences of the evaluation criteria.
In Figure 2, N is the size of the input vector, and M is the size of the output vector. Also, x; and y;
indicate the ith input node and jth output node, respectively. W; is the weighting vector connected to jth
output node from all input nodes. In this study, the competitive neural network is trained with Kohonen’s
learning rule (Bharath and Drosen, 1994) using 3500 data obtained from the simulation. Neural network

toolbox in the Matlab software (Demuth and Beale, 1995) is applied for training.

relative objectives for relative objectives for
current next system status performance measures
decision decision [~ 1 |

rules rules

20000 00O
classes

Fig. 2. The competitive neural network
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In this research, the neural network model is designed to be trained such that it can (1) generate next
decision rules based on the current decision rules, system status and performance measures, and (2) control
the levels of system status as well as those of performance measures of the next production interval. To
reflect the above features in the competitive neural network, we present the relative objectives of the all
evaluation criteria together with the current decision rules and the next decision rules as an input vector
to the neural network. In Figure 2, x; and 1 represent the current decision rules and the next decision
rules, respectively. Also, x;, i=3,...k are the relative objectives of the system status, and x;, j=k+1,. N
are the relative objectives of performance measures. Unlike other input nodes, x; and x, are not connected
to output nodes through weighting vectors. We do not make the connections deliberately in order that x;
and x; cannot affect the classification. In other words, only the relative objectives contribute on the classifica-

tion + x; and x; are included in the input vector to be used in inductive learning.

The neural network categorizes the training input vectors according to the similarity base which is defined
as the similar amount of the differences of the evaluation criteria between the current production interval

and the next production interval. A classes is an output node where similar input vectors are aggregated.

V. Knowledge Reasoning : An Inductive Learning Approach

Using the output of the competitive neural network, the C4.5 systematically constructs a decision tree
and production rules, this allows us to obtain the characteristics of each class. C4.5 employs outputs of
the neural network as a set of training examples to induce scheduling knowledge. A decision tree and
production rules produced by C4.5 will be used as the scheduling knowledge and be attached to a scheduler
which selects the desired decision rules. For exarpple, in our FMS scenario, an example includes four attributes
and a class number. Two attributes describe decision rules on four decision variables for the current and
the next production intervals, respectively. The other two attributes contain the differences of evaluation
criteria. The class number is determined by the competitive neural network.

Inductive learning does not require precise concepts and definitions for domain problems in advance.
A set of training examples is provided as the input for learning the concept which represents each class.
A training example consists of attribute values and the associated class. An obtained concept can be presented
by forms of a decision tree or rules which are constructed by the inductive learning process. If a new
example satisfies the condition of a rule produced by inductive learning, then it belongs to the corresponding
class. The quality of learned concepts depends on training examples, attributes and pre-defined classes.

Attributes are used to describe the characteristics of examples. Quinlan’s ID3 algorithm is one of the popular
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inductive algorithms. The ID3 algorithm induces concepts from examples. Its advantages include its clear
representation of learned knowledge, the management of complexity, its heuristic for selecting candidate
concepts and its potential for handling noisy data (Quinlan, 1993). It uses a set of training examples to
induce IF.THEN.. rules, which constructs a decision tree in top-down fashion. A part of the production

rules which classify outputs of the neural network is shown in Figure 3.

Rule 10 :
change_max_tardiness_>-447.75
change_max_tardiness <=-248
change_mean_flow_time>-222.416
change_mean_flow_time<{=-5.76242
change _crane util>-0.12704
change _slack<=104.767
—> class 4 [91.0%]

Rule 29
change_mean_tardiness>-136.508
change_max_tardiness>>-248
change max_tardiness<=-71.4375
change mean_flow_time<=-88.1775
change _slack>>46.4568
change _slack<C=169.24
—> class 14 [95.1%]

Rule 43
change_mean _tardiness_>-45.454
change max_tardiness>>-239.676
change _max_tardiness<<=-71.4375
change_mean_flow_time>-88.1775
change_mean_flow_time<(=53.1445
change_slack>-43.3898
—> class 10 [96.8%]

Rule 45°
change max_tardiness>> = ~95.5625
change_mean_flow_time>53.1445
change_mean_flow_time>> = 166.495
—> class 6 [95.8%]

Fig. 3. A part of production rules
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After inductive learning determines the class to which desired differences of evaluation criteria belong,
the search algorithm starts to search the instances of the class one by one until it finds an instance whose
current decision rules are matched with the current decision rules given by the FMS operator. An instance
corresponds to an output of the simulation. If such an instance is found, the search algorithm extracts the
next decision rules from the instance. Otherwise, a voting method is undertaken as follows : for each next
decision variable, find the mostly used next decision rule in the class, and take the rule (winning rule)
as the decision rule for the next decision variable. The idea behind employing the voting method is that
the winning rules can satisfy the desired relative objectives of evaluation criteria maximally with a great

chance no matter what rules are applied in the current production interval.

VI. Results and Future Research Work

Table 3 shows the actual results and the desired results (values) given by the operator. Since the actual
results cannot be obtained as long as the FMS is actually operated, we regard simulated results as the
actual values. In this table, the comparison result of crane utilization is omitted because of page limit. Initial
applied decision rules are [1131], which are identical to FWJM rule for selection of machine by part, SDR
for selection of rack by part, SRPT for selection of part by machine, and SDP for selection of part by crane.
After production interval [t0, t1], the next decision rules are changed by the guidance of the scheduler.
As the last column of Table 3 indicates, the decision rules are changed at every production interval. This
implies that the evaluation criteria are varied dynamically, and thus there is no potent combination of rules
that can achieve all the objectives.

As shown in Figure 4 to 7, the scheduler satisfies most of the objectives, but it has the difficulty of
exactly achieving all the objectives simultaneously in every production interval. Also, it is observed that
behavior of the system in terms of the evaluation criteria is not stable even if the scheduler endeavors
to keep the good performance measures and system status by altering the decision rules. This phenomenon
can be observed in production interval [#3 #5]. In production interval [¢3, #4], the scheduler succeeds in
maintaining good performance measures. For example, the mean tardiness and the maximum tardiness are
almost zero, which is also desired value given by the operator. In production interval (#4, t5], however,
the actual values are increased although the operator wants to keep the previous performance measures.
The limitation of the FMS capacity is the factor causing the phenomenon. Because the parts are introduced
continuously until available rack exists, the system reaches its processing limit at the end of production

interval (¢4, ¢5]. Therefore, the performance measures become increasing from production interval (4, t5].
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Table 3. Comparison results between actual and desired values

Production Actual values ) Applied
interval (simulation output) Desired values decision rules
mean max. mean slack mean max. mean slack
tard. tard. flow tard. tard. flow
time time
10 to t1 238 366 516 -85 238 366 516 -85 1131
tl to 12 10.9 203 255 100 975 216 366 15 2334
12 to 13 0.31 8.1 206 128 35 103 205 100 1331
3 to 4 0.28 12.4 210 104 0.31 81 206 128 4142
H to t5 14 270 273 97.2 0.28 124 260 104 2111
5 to t6 119 480 405 -38 114 370 373 472 4144
16 to 7 120 380 388 -24 98.5 460 375 -75 1312
7 to t8 0 0 167 128 19.8 180 238 75.7 4342
8 to 19 0 0 204 103 0 0 167 128 1313
{9 to t10 0 0 196 119 0 0 167 103 2331
t10 to t11 0 0 204 124 0 0 167 119 2342
t11 to t12 189 128 27 815 0 0 167 124 2321

This situation is also observed in case of the mean flowtime and the slack. One advantage of using the
scheduler is that the operator can understand the capacity limit of the system during the FMS operation,
which helps the operator design production plans such as lot sizing and selection of part types to be processed
concurrently.

Moreover, the scheduler has the ability to loosen the speed of getting worse of evaluation criteria, and
reduce the values of evaluation criteria again. For example, in production interval [¢5, t8], the scheduler
reduces the increasing speed of the mean tardiness, maximum tardiness, and the mean flowtime. Also,
it reduces the decreasing speed of the slack. Furthermore, at the end of production interval [8, 9], the
mean tardiness, maximum tardiness, and the mean flowtime are decreased down to zero, which is the ideal
value observed in production interval [t3 4] This happening can be seen in case of slack.

In Figure 4, all actual mean tardiness values are similar to the covresponding desived value except production
interval <t1, t2] in which the actual value is 10.9, and the desired value is 97.5. But this can be considered
as a desirable result because the scheduler lowers the mean tardiness more than the operator’s desired
value. Such a result can be seen several times in the other graphs (see Figure 5 to 7). Some large deviations

in the graphs are not thought as discouraged result because we choose a real FMS and take into consideration
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of multi-objectives and multi-decision variables in the experimentation. Also, the inaccuracy can be compensa-
ted by gathering more simulation data, or having a prior knowledge about the system capacity.
Throughout this simulation, the integration model of the competitive neural network and the inductive

learning has been proved to be an effective tool for acquiring and refining FMS scheduling knowledge.
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Fig. 4. Comparison result of the mean tardiness
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Since the knowledge can be retrieved once it is stored in computer, and can be modified without difficulty

if necessary,

the integration model is practical to apply to real FMSs. For a future research work, it is

necessary to develop a systematic knowledge modification method so that the knowledge always reflects

the dynamic
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