• 제목/요약/키워드: Network intrusion detection systems

검색결과 227건 처리시간 0.028초

An Intrusion Detection Model based on a Convolutional Neural Network

  • Kim, Jiyeon;Shin, Yulim;Choi, Eunjung
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.165-172
    • /
    • 2019
  • Machine-learning techniques have been actively employed to information security in recent years. Traditional rule-based security solutions are vulnerable to advanced attacks due to unpredictable behaviors and unknown vulnerabilities. By employing ML techniques, we are able to develop intrusion detection systems (IDS) based on anomaly detection instead of misuse detection. Moreover, threshold issues in anomaly detection can also be resolved through machine-learning. There are very few datasets for network intrusion detection compared to datasets for malicious code. KDD CUP 99 (KDD) is the most widely used dataset for the evaluation of IDS. Numerous studies on ML-based IDS have been using KDD or the upgraded versions of KDD. In this work, we develop an IDS model using CSE-CIC-IDS 2018, a dataset containing the most up-to-date common network attacks. We employ deep-learning techniques and develop a convolutional neural network (CNN) model for CSE-CIC-IDS 2018. We then evaluate its performance comparing with a recurrent neural network (RNN) model. Our experimental results show that the performance of our CNN model is higher than that of the RNN model when applied to CSE-CIC-IDS 2018 dataset. Furthermore, we suggest a way of improving the performance of our model.

Intrusion Detection using Attribute Subset Selector Bagging (ASUB) to Handle Imbalance and Noise

  • Priya, A.Sagaya;Kumar, S.Britto Ramesh
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.97-102
    • /
    • 2022
  • Network intrusion detection is becoming an increasing necessity for both organizations and individuals alike. Detecting intrusions is one of the major components that aims to prevent information compromise. Automated systems have been put to use due to the voluminous nature of the domain. The major challenge for automated models is the noise and data imbalance components contained in the network transactions. This work proposes an ensemble model, Attribute Subset Selector Bagging (ASUB) that can be used to effectively handle noise and data imbalance. The proposed model performs attribute subset based bag creation, leading to reduction of the influence of the noise factor. The constructed bagging model is heterogeneous in nature, hence leading to effective imbalance handling. Experiments were conducted on the standard intrusion detection datasets KDD CUP 99, Koyoto 2006 and NSL KDD. Results show effective performances, showing the high performance of the model.

패턴분류와 해싱기법을 이용한 침입탐지 시스템 (Intrusion Detection System using Pattern Classification with Hashing Technique)

  • 윤은준;김현성;부기동
    • 한국산업정보학회논문지
    • /
    • 제8권1호
    • /
    • pp.75-82
    • /
    • 2003
  • 인터넷의 대중화로 인한 네트워크의 급속한 팽창으로 보안관리가 중요하게 인식되고 있다. 특히, 이상패킷을 이용한 공격들은 비정상적인 패킷들을 통하여 침입탐지 시스템이나 침입차단 시스템을 우회하여 공격하기 때문에 탐지해 내기가 어렵다. 본 논문에서는 이상패킷을 이용한 공격들을 실시간에 효율적으로 탐지할 수 있는 네트워크 기반의 침입탐지 시스템을 설계하고 구현한다. 침입탐지 시스템을 설계하기 위하여 먼저 침입 탐지를 위한 패턴을 분류하고 이를 기반으로 해싱기법이 적용된 룰트리를 생성한다. 생성된 룰트리를 기반으로 제안한 시스템은 이상패킷 공격을 효율적으로 실시간에 탐지한다.

  • PDF

침입 탐지 시스템을 위한 효율적인 룰 보호 기법 (A Scheme for Protecting Security Rules in Intrusion Detection System)

  • 손재민;김현성;부기동
    • 한국산업정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.8-16
    • /
    • 2003
  • 본 논문에서는 기존의 네트워크 기반의 침입탐지 시스템인 Snort에 존재하는 취약성을 해결하기 위한 방법을 제안한다. 현재 룰 기반의 침입탐지 시스템인 Snort에서는 룰 자체를 보호하기 위한 방법을 제공하지 못한다. 이러한 문제를 해결하기 위해서 본 논문에서는 해쉬함수를 이용하여 룰 자체에 대한 보호를 제공할 수 있는 기법을 제안한다. 이러한 기법을 통하여 룰 자체에 대한 무결성과 기밀성을 제공할 수 있을 것이다.

  • PDF

과탐지 감소를 위한 NSA 기반의 다중 레벨 이상 침입 탐지 (Negative Selection Algorithm based Multi-Level Anomaly Intrusion Detection for False-Positive Reduction)

  • 김미선;박경우;서재현
    • 정보보호학회논문지
    • /
    • 제16권6호
    • /
    • pp.111-121
    • /
    • 2006
  • 인터넷이 빠르게 성장함에 따라 네트워크 공격기법이 변화되고 새로운 공격 형태가 나타나고 있다. 네트워크상에서 알려진 침입의 탐지는 효율적으로 수행되고 있으나 알려지지 않은 침입에 대해서는 오탐지(false negative)나 과탐지(false positive)가 너무 높게 나타난다. 또한, 네트워크상에서 지속적으로 처리되는 대량의 패킷에 대하여 실시간적인 탐지와 새로운 침입 유형에 대한 대응방법과 인지능력에 한계가 있다. 따라서 다양한 대량의 트래픽에 대해서 탐지율을 높이고 과탐지를 감소할 수 있는 방법이 필요하다. 본 논문에서는 네트워크 기반의 이상 침입 탐지 시스템에서 과탐지를 감소하고, 침입 탐지 능력을 향상시키기 위하여 다차원 연관 규칙 마이닝과 수정된 부정 선택 알고리즘(Negative Selection Algorithm)을 결합한 다중 레벨 이상 침입 탐지 기술을 제안한다. 제안한 알고리즘의 성능 평가를 위하여 기존의 이상 탐지 알고리즘과 제안된 알고리즘을 수행하여, 각각의 과탐지율을 평가, 제시하였다.

A Detailed Analysis of Classifier Ensembles for Intrusion Detection in Wireless Network

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1203-1212
    • /
    • 2017
  • Intrusion detection systems (IDSs) are crucial in this overwhelming increase of attacks on the computing infrastructure. It intelligently detects malicious and predicts future attack patterns based on the classification analysis using machine learning and data mining techniques. This paper is devoted to thoroughly evaluate classifier ensembles for IDSs in IEEE 802.11 wireless network. Two ensemble techniques, i.e. voting and stacking are employed to combine the three base classifiers, i.e. decision tree (DT), random forest (RF), and support vector machine (SVM). We use area under ROC curve (AUC) value as a performance metric. Finally, we conduct two statistical significance tests to evaluate the performance differences among classifiers.

보안정책 기반 침입탐지 시스템 모델 설계 (Design of Security Policy-based Intrusion Detection System Model)

  • 김강;전종식
    • 한국컴퓨터정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.81-86
    • /
    • 2003
  • 컴퓨터네트워크의 확대 및 인터넷 이용의 급격한 증가에 따른 부작용으로 컴퓨터 보안문제가 중요하게 대두되고 있다. 따라서. 침입자들로부터 위험을 줄이기 위해 침입탐지시스템에 관한 연구가 활발하다. 특히, 본 논문은 침입탐지시스템을 바탕으로 한 새로운 보안정책 기반 침입탐지 시스템 모델을 제안하고, 이를 설계 및 프로토타입을 구현하여 그 타당성을 보인다. 제안한 모델에서 보안정책 기반 침입탐지시스템들은 여러 컴퓨터에 분산되고, 분산된 보안정책 기반 침입탐지시스템들 중에서 어느 하나가 특정 프로세스에 의해 발생된 시스템 호출 순서 중 비정상적인 시스템 호출을 탐지한 경우에 이를 다른 보안정책 기반 탐지시스템들과 서로 동적으로 공유하여 새로운 침입에 대하여 대응책을 향상시킨다.

  • PDF

Tri-training algorithm based on cross entropy and K-nearest neighbors for network intrusion detection

  • Zhao, Jia;Li, Song;Wu, Runxiu;Zhang, Yiying;Zhang, Bo;Han, Longzhe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3889-3903
    • /
    • 2022
  • To address the problem of low detection accuracy due to training noise caused by mislabeling when Tri-training for network intrusion detection (NID), we propose a Tri-training algorithm based on cross entropy and K-nearest neighbors (TCK) for network intrusion detection. The proposed algorithm uses cross-entropy to replace the classification error rate to better identify the difference between the practical and predicted distributions of the model and reduce the prediction bias of mislabeled data to unlabeled data; K-nearest neighbors are used to remove the mislabeled data and reduce the number of mislabeled data. In order to verify the effectiveness of the algorithm proposed in this paper, experiments were conducted on 12 UCI datasets and NSL-KDD network intrusion datasets, and four indexes including accuracy, recall, F-measure and precision were used for comparison. The experimental results revealed that the TCK has superior performance than the conventional Tri-training algorithms and the Tri-training algorithms using only cross-entropy or K-nearest neighbor strategy.

A Study on Security Event Detection in ESM Using Big Data and Deep Learning

  • Lee, Hye-Min;Lee, Sang-Joon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권3호
    • /
    • pp.42-49
    • /
    • 2021
  • As cyber attacks become more intelligent, there is difficulty in detecting advanced attacks in various fields such as industry, defense, and medical care. IPS (Intrusion Prevention System), etc., but the need for centralized integrated management of each security system is increasing. In this paper, we collect big data for intrusion detection and build an intrusion detection platform using deep learning and CNN (Convolutional Neural Networks). In this paper, we design an intelligent big data platform that collects data by observing and analyzing user visit logs and linking with big data. We want to collect big data for intrusion detection and build an intrusion detection platform based on CNN model. In this study, we evaluated the performance of the Intrusion Detection System (IDS) using the KDD99 dataset developed by DARPA in 1998, and the actual attack categories were tested with KDD99's DoS, U2R, and R2L using four probing methods.

패턴 분류를 이용한 침입탐지 시스템 모델 (An Intrusion Detection System Using Pattern Classification)

  • 윤은준;김현성;부기동
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2002년도 추계공동학술대회
    • /
    • pp.59-65
    • /
    • 2002
  • 최근 침입 탐지시스템에 대한 관심이 증대되고 있다 침입탐지 시스템에서 침입여부 확인을 위하여 패턴매칭 기법이 주로 사용된다. 기존의 패턴매칭 기법들은 다양한 공격 패턴들에 대한 패턴 비교 시간이 많이 소요되는 문제점이 있었다. 본 논문에서는 기존의 패턴 매칭 기법들이 가지고 있는 문제점을 해결하기 위하여 새로운 침입 탐지 시스템을 제안한다. 제안한 시스템은 효율적인 패턴비교를 위하여 롤 패턴을 분류한다. 분류된 패턴은 매칭을 위하여 정형화된 트리로 구현한다 그러므로, 본 논문에서 제안한 침입탐지 시스템 모델은 효율적으로 네트워크 침입 탐지를 수행 할 수 있다.

  • PDF