KSII Transactions on Internet and Information Systems (TIIS)
/
제11권1호
/
pp.193-214
/
2017
In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.
본 논문에서는 인터넷에서의 트래픽 엔지니어링 체제를 구축하기 위하여 트래픽 엔지니어링을 수행하기 위한 상위레벨 기능 모델을 제시하였다. 제시한 기능 모델은 트래픽 관리, 용량 관리, 그리고 네트워크 계획으로 구성된다. 트래픽 관리는 다양한 조건하에서 네트워크 성능을 최대화하는 것을 목적으로 하며, 용량 관리는 최소의 비용으로 네트워크 요구에 대한 성능 목표치를 만족시키기 위하여 네트워크가 설계되고 제공됨을 목적으로 한다. 또한 네트워크 계획은 예측된 트래픽 증가에 앞서 노드와 전송 용량이 계획되고 배치됨을 보장한다.
International Journal of Concrete Structures and Materials
/
제1권1호
/
pp.63-73
/
2007
Optimum multi-layered feed-forward neural network (NN) models using a resilient back-propagation algorithm and early stopping technique are built to predict the shear capacity of reinforced concrete deep and slender beams. The input layer neurons represent geometrical and material properties of reinforced concrete beams and the output layer produces the beam shear capacity. Training, validation and testing of the developed neural network have been achieved using 50%, 25%, and 25%, respectively, of a comprehensive database compiled from 631 deep and 549 slender beam specimens. The predictions obtained from the developed neural network models are in much better agreement with test results than those determined from shear provisions of different codes, such as KBCS, ACI 318-05, and EC2. The mean and standard deviation of the ratio between predicted using the neural network models and measured shear capacities are 1.02 and 0.18, respectively, for deep beams, and 1.04 and 0.17, respectively, for slender beams. In addition, the influence of different parameters on the shear capacity of reinforced concrete beams predicted by the developed neural network shows consistent agreement with those experimentally observed.
데이터 저장장치는 서버의 내부나 근처에 있는 것으로 인식되어 왔으나 네트워크 기술의 발달로 저장장치 시스템은 주 전산기와 원거리에 떨어져 존재할 수 있게 되었다. 인터넷 시대에 데이터 량의 폭발적인 증가는 데이터를 저장하는 시스템과 이를 전송하는 시스템의 균형 있는 발전을 요구하고 있으며 SAN(Storage Area Network)이나 NAS(Network Attached Storage)은 이러한 요구를 반영하고 있다. 저장장치로부터 최적의 성능을 도출하기 위해서 복잡한 저장 네트워크의 용량과 한계를 파악하는 것이 중요하다. 파악된 데이터는 성능 조율의 기초가 되고 저장장치의 구매 시점을 결정하는데 사용될 수도 있다. 본 논문에서는 저장 네트워크 시스템의 큐잉 네트워크를 통한 분석적 모델을 제시한 다음, 이의 시뮬레이션하여 분석적 모델이 정당하다는 것을 입증한다.
In this paper, we study how to achieve the maximum capacity under delay constraints for large mobile wireless networks. We develop a systematic methodology for studying this problem in the asymptotic region when the number of nodes n in the network is large. We first identify a number of key parameters for a large class of scheduling schemes, and investigate the inherent tradeoffs among the capacity, the delay, and these scheduling parameters. Based on these inherent tradeoffs, we are able to compute the upper bound on the maximum per-node capacity of a large mobile wireless network under given delay constraints. Further, in the process of proving the upper bound, we are able to identify the optimal values of the key scheduling parameters. Knowing these optimal values, we can then develop scheduling schemes that achieve the upper bound up to some logarithmic factor, which suggests that our upper bound is fairly tight. We have applied this methodology to both the i.i.d. mobility model and the random way-point mobility model. In both cases, our methodology allows us to develop new scheduling schemes that can achieve larger capacity than previous proposals under the same delay constraints. In particular, for the i.i.d. mobility model, our scheme can achieve (n-1/3/log3/2 n) per-node capacity with constant delay. This demonstrates that, under the i.i.d. mobility model, mobility increases the capacity even with constant delays. Our methodology can also be extended to incorporate additional scheduling constraints.
Application of network coding in wireless two-way relay channels (TWRC) has received much attention recently because its ability to improve throughput significantly. In traditional designs, network coding operates at upper layers above (including) the link layer and it requires the input packets to be correctly decoded. However, this requirement may limit the performance and application of network coding due to the unavoidable fading and noise in wireless networks. In this paper, we propose a new wireless network coding scheme for TWRC, which is referred to as soft network coding (SoftNC), where the relay nodes applies symbol-by-symbol soft decisions on the received signals from the two end nodes to come up with the network coded information to be forwarded. We do not assume further channel coding on top of SoftNC at the relay node (channel coding is assumed at the end nodes). According to measures of the soft information adopted, two kinds of SoftNC are proposed: amplify-and-forward SoftNC (AF-SoftNC) and soft-bit-forward SoftNC (SBF-SoftNC). We analyze the both the ergodic capacity and the outage capacity of the two SoftNC schemes. Specifically, analytical form approximations of the ergodic capacity and the outage capacity of the two schemes are given and validated. Numerical simulation shows that our SoftNC schemes can outperform the traditional network coding based two-way relay protocol, where channel decoding and re-encoding are used at the relay node. Notable is the fact that performance improvement is achieved using only simple symbol-level operations at the relay node.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.2840-2853
/
2015
A major challenge in network service providers is to provide adequate resources in service level agreements based on forecasts of future demands. In this paper, we address the problem of capacity provisioning in a network subject to demand uncertainty such that a network coded multicast is applied as the data delivery mechanism with limited budget to purchase extra capacity. We address some particular type of uncertainty sets that obtain a tractable constrained capacity provisioning problem. For this reason, we first formulate a mathematical model for the problem under uncertain demand. Then, a robust optimization model is proposed for the problem to optimize the worst-case system performance. The robustness and effectiveness of the developed model are demonstrated by numerical results. The robust solution achieves more than 10% reduction and is better than the deterministic solution in the worst case.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권1호
/
pp.366-381
/
2020
Steganography has been successfully employed in various applications, e.g., copyright control of materials, smart identity cards, video error correction during transmission, etc. Deep learning-based steganography models can hide information adaptively through network learning, and they draw much more attention. However, the capacity, security, and robustness of the existing deep learning-based steganography models are still not fully satisfactory. In this paper, three models for different cases, i.e., a basic model, a secure model, a secure and robust model, have been proposed for different cases. In the basic model, the functions of high-capacity secret information hiding and extraction have been realized through an encoding network and a decoding network respectively. The high-capacity steganography is implemented by hiding a secret image into a carrier image having the same resolution with the help of concat operations, InceptionBlock and convolutional layers. Moreover, the secret image is hidden into the channel B of carrier image only to resolve the problem of color distortion. In the secure model, to enhance the security of the basic model, a steganalysis network has been added into the basic model to form an adversarial network. In the secure and robust model, an attack network has been inserted into the secure model to improve its robustness further. The experimental results have demonstrated that the proposed secure model and the secure and robust model have an overall better performance than some existing high-capacity deep learning-based steganography models. The secure model performs best in invisibility and security. The secure and robust model is the most robust against some attacks.
The paradigm of health promotion requests community participation and its active problem-solving. Community is conceptualized as a resource pool to be organized. Such resource is called community capacity. Community participation is a process of capacity building. Community voluntary associations are considered as valuable resource to be used for health promotion. This paper tried to identify the network structure among community voluntary associations and to infer the possibility to make such network of organizations participate in health promotion programs. Two survey data were used for this research: 1) Measurements and Evaluations of Community Capacity on Dobong-gu (N=94) 2) A development plan of health medicine service to be Healthy Gangdong-gu (N=69). The questionnaire included such variables measuring community capacity as leadership, membership, organizational resources, and inter-organizational network, etc. Both regions had the following common characteristics: 1) There were positive correlations between the organization's budget and membership. 2) Organizational types were associated with their founded years. Two regions showed the following differences: Dobong displayed the high density of community organizations, but Gangdong showed the low density. Dobong community organizations were able to be classified into three network clusters such as women & environments, youth & adolescent, and sports organizations. Each cluster of organizations favored the different type of health promotion programs. Gangdong community organizations were less developed, and not possible to be clustered. Depending upon the level of community capacity or community organizations' differentiation, the strategy of community participation could be settle down in different ways. Particularly the health agency had to pay more attention to support the growth of civil organizations.
International Journal of Advanced Culture Technology
/
제11권3호
/
pp.310-314
/
2023
The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.