
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, Jan. 2020                                         366 
Copyright ⓒ 2020 KSII 

High-Capacity Robust Image 
Steganography via Adversarial Network 

 
Beijing Chen1,2,3,4*, Jiaxin Wang1, Yingyue Chen5, Zilong Jin1, Hiuk Jae Shim1, and Yun-Qing Shi6 

1 School of Computer & Software, Nanjing University of Information Science & Technology,  
Nanjing 210044, China 

2Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information 
Science & Technology, Nanjing 210044, China 

3Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), 
Nanjing University of Information Science & Technology, Nanjing 210044, China 

4 Key Laboratory of Computer Network Technology of Jiangsu Province, Southeast University,  
Nanjing 210096, China 

5School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China 
6 Department of Electrical and Computer Engineering, New Jersey Institute of Technology,  

Newark 07102, USA 
*Corresponding author: Beijing Chen [e-mail: nbutimage@126.com.] 

 
Received October 14, 2019; accepted December 18, 2019; published January 31, 2020 

 

Abstract 
 

Steganography has been successfully employed in various applications, e.g., copyright control 
of materials, smart identity cards, video error correction during transmission, etc. Deep 
learning-based steganography models can hide information adaptively through network 
learning, and they draw much more attention. However, the capacity, security, and robustness 
of the existing deep learning-based steganography models are still not fully satisfactory. In this 
paper, three models for different cases, i.e., a basic model, a secure model, a secure and robust 
model, have been proposed for different cases. In the basic model, the functions of 
high-capacity secret information hiding and extraction have been realized through an encoding 
network and a decoding network respectively. The high-capacity steganography is 
implemented by hiding a secret image into a carrier image having the same resolution with the 
help of concat operations, InceptionBlock and convolutional layers. Moreover, the secret 
image is hidden into the channel B of carrier image only to resolve the problem of color 
distortion. In the secure model, to enhance the security of the basic model, a steganalysis 
network has been added into the basic model to form an adversarial network. In the secure and 
robust model, an attack network has been inserted into the secure model to improve its 
robustness further. The experimental results have demonstrated that the proposed secure 
model and the secure and robust model have an overall better performance than some existing 
high-capacity deep learning-based steganography models. The secure model performs best in 
invisibility and security. The secure and robust model is the most robust against some attacks. 
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1. Introduction 

Steganography involves hiding secret information in an appropriate multimedia carrier, e.g., 
text, image, audio, and video files, in imperceptible ways such that no one even suspects the 
existence of the secret information except the sender and receiver [1，2]. Moreover, the 
receiver can accurately extract the secret information. Steganography is mainly for covert 
communication. It is also employed in other applications, e.g., copyright control of materials, 
smart identity cards where individuals’ details are embedded in their photographs, video error 
correction during transmission [3, 4], privacy protection of authorized people in surveillance 
system [5], TCP/IP packets (for instance a unique ID can be embedded into an image to 
analyze the network traffic of particular users) [6]. In particular, the Japanese firm Fujitsu is 
perfecting steganography to encode data into a picture that is invisible to the human eye but 
can be decoded by a cell phone camera [7]. This application can be used in doctor’s 
prescriptions, food wrappers, billboards, and business cards. So, steganography plays an 
important role in people’s daily life. 

Image steganography is the most popular one in multimedia steganography [8, 9]. 
Traditional image steganography algorithms can be divided into two categories: 
spatial-domain models and transform-domain ones. The spatial-domain models mainly hide 
secret information by changing the brightness value or chrominance value of carrier image. 
Least significant bit (LSB) model is a simple and representative spatial-domain model. It first 
converts secret information into binary data, and then replaces the LSBs of some pixels in the 
carrier image [10, 11]. The transform-domain models need to apply a transform to the carrier 
image first, and then modify transform-domain coefficients to embed secret information. The 
commonly used transforms are discrete Fourier transform [12], discrete cosine transform [13], 
discrete wavelet transform [14], and random transform [15], etc.  

However, both spatial-domain and transform-domain models are hand-crafted ones. They 
consider the positions and strengths of hiding information manually. Moreover, for a given 
carrier image and secrete information, it is difficult to decide which domain or which 
transform is the optimal one [16]. Deep learning is an important branch of machine learning. It 
aims to automatically learn useful and highly abstract features of data by simulating human 
brain. Therefore, it can learn the basic characteristics of data better than the traditional 
machine learning methods [17]. So, deep learning has become a common and significant tool 
in computer vision and other related fields since 2006 [18]. So does the field of steganography. 
The deep learning-based steganography models [19-28] use an encoding network for 
steganography and a decoding network for extracting secret information. All the positions and 
strengths of hiding information as well as hiding domain are automatically achieved by 
training the networks. However, these works have one or more of the following shortcomings: 
1) the colors of the generated steganographic images are distorted [26]; 2) the steganography 
model does not consider both security against steganalysis and robustness against some 
attacks during the training phase [26, 27] or only considers security [19-25, 28]. However, 
security and robustness are also very important in some real applications, where the secret 
information needs to be correctly extracted from steganographic images subjected to some 
attacks; 3) hiding capacity is very limited in [19-25]. However, sometimes we need to hide a 
secret image into a natural carrier image for secret image transmission. Therefore, three 
models (basic model, secure model, secure and robust model) are proposed in this paper to 
consider all invisibility, security, and robustness while hiding high-capacity information.  

The main contributions of our work are as below: 1) the color distortion problem in [26] is 
resolved by hiding information in only channel B of color carrier image; 2) all of invisibility, 
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security, and robustness are considered when hiding high-capacity information in the training 
phase; 3) the secret image can be still extracted after some attacks. The remaining of the paper 
is organized as follows. In Section 2, the related works are recalled. In Section 3, three 
proposed models are presented. The experimental results and analysis are given in Section 4. 
Finally, the paper is summarized in Section 5. 

2. Related Works 
In this section, the related works of steganography based on deep learning is first recalled. 
Since the proposed steganography models in this paper combine the steganalysis based on 
XuNet, this section also describes the steganalysis based on XuNet. 

2.1 Steganography Based on Deep Learning 
The steganography models based on deep learning are basically realized by adversarial 
networks. Volkhonskiy et al. [19] first proposed the steganography model called 
Steganographic Generative Adversarial Network (SGAN) based on GAN. This model resisted 
steganalysis and made hidden information secure. Based on SGAN, Shi et al. [20] proposed 
SSGAN (Secure Steganography Based on GAN) to enhance security against steganalysis. The 
HayesGAN model proposed by Hayes et al. [21] used adversarial learning to generate 
steganographic images directly. Then, Hu et al. [22] introduced a steganalysis network into 
HayesGAN to improve the quality and safety of the generated steganographic images. 
However, these two works are not guaranteed to extract embedded secret information 
completely. Zhu et al. [23] proposed another model called Hiding Data With Deep Network 
(HiDDeN) based on HayesGAN. It can extract embedded information with high accuracy 
under various attacks, such as Gaussian blur, missing pixels, cropping, and JPEG compression, 
etc. Tang et al. [24] combined GAN with an adaptive steganography model to find suitable 
steganographic positions for steganography and proposed Automatic Steganographic 
Distortion Learning Framework with GAN (ASDL-GAN). Yang et al. [25] modified the 
ASDL-GAN model by replacing the activation function Ternary Embedding Simulator (TES) 
with Tanh to improve security. 

Although the above-mentioned adversarial network-based steganography models achieve 
fine performance in steganography and resisting steganalysis, their hiding capacities are very 
limited. Accordingly, some researchers [26-28] proposed high-capacity steganography 
models to embed secret images into carrier images with the same resolution. Rehman et al. 
[26] proposed an end-to-end framework to embed a secret gray image into a color carrier 
image with the same resolution. Their work realizes high-capacity embedding but distorts the 
color information of steganographic images. Then, in the loss function, Baluja et al. [27] 
considered the correlation between a secret image and an error image obtained from a 
steganographic image and carrier image to improve the invisibility of the steganographic 
image. Zhang et al. [28] proposed ISGAN (Invisible Steganography via Generative 
Adversarial Networks) by introducing the steganalysis network proposed by Xu et al. [29] into 
their basic model to improve its ability to resist steganalysis. In addition, the SteganoGAN 
model proposed by Zhang et al. [30] used residual structure to improve the quality of 
steganographic images further. To sum up, these high-capacity works perform well in terms of 
invisibility and security. However, they are not robust to various attacks. Inspired by works of 
Rehman [26], Zhang [28] and Zhu [23], this paper tries to consider all invisibility, security, 
and robustness in the steganography network while preserving high-capacity property. 
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2.2 Steganalysis Based on XuNet 
XuNet is proposed by Xu et al. [29] in 2016. The architecture of XuNet is shown in Fig. 1. The 
network adds a fixed high-pass filter (HPF, using KV kernel) layer at the front end. Since 
high-frequency noise signal in steganography is symmetric around zero, XuNet uses zero-bias 
parameter in the first convolutional layer and adds ABS layer to reduce the range of feature 
map. Batch nomalization (BN) layer is added to improve convergence speed and to avoid 
falling into local minimum. In addition, XuNet utilizes a hybrid activation function to 
optimize the model: TanH activation function is used in the network front end to improve the 
learning ability of features, and ReLU activation function is adopted to reduce the difficulty of 
back-propagation. Finally, XuNet also uses 1×1 convolution kernels and global average 
pooling in the later layers of the network to prevent network model overfitting and feature loss. 
These improvements conducted in XuNet has led to great performance gains. 
 

 

Fig. 1. Architecture of the steganalysis network proposed by Xu et al. [29]. 

3. Proposed Models 
This section proposes three models for steganography. The first one is a basic model, which 
realizes the functions of secret image hiding and secret image extraction. The others are two 
enhanced models, which improve the security and robustness of the basic model. 

3.1 Basic Model 
An end-to-end basic model is designed to realize the functions of steganography and secret 
image extraction. Its main architecture is shown in Fig. 2. The basic model consists of two 
parts: encoding network and decoding network. The encoding network hides a gray secret 
image into channel B of a color carrier image with the same resolution to obtain a 
steganographic image. The decoding network is responsible for extracting the secret image 
from channel B of the steganographic image. Here, the reasons of choosing channel B only are 
that: 1) considering all channels will distort the colors of the generated steganographic images 
as shown in [31]; 2) human eyes are less sensitive to the B channel than the R and G channels 
according to human visual system [32].  
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Fig. 2. Architecture of the proposed basic model. 

Specifically, as for the encoding network, the gray secret image and the channel B of the 
color carrier image are respectively used as inputs for two parallel branches. Then, feature 
extraction is performed on the input image in two parallel branches through a series of 
convolutional layers and ReLU layers. After each two convolutional layers, the features 
extracted from the gray secret image branch are superimposed on the features extracted from 
the color carrier image branch by a total of four concat operations as the work of Rehman et al. 
[26]. Then, the final superimposed features are processed by six InceptionBlock [33] and two 
convolutional layers to hide the secret image into the B channel of the cover image completely. 
Here, different from Ref. [26], InceptionBlock is introduced into the encoding network 
because InceptionBlock can fuse feature maps with different perceptual field sizes very well 
by using several convolution kernels with different sizes. Finally, the new channel B is merged 
with R and G channels to get the final steganographic image. In the decoding network, the 
channel B of the steganographic image is regarded as an input, and it goes through a series of 
convolution layers and ReLU layers to obtain an extracted secret image.  

For loss function, Rehman et al. [26] considered to minimize the distortion function of both 
steganographic image and extracted secret image. They used the mean square error (MSE) to 
evaluate the distortion and achieved a fine performance. So, this paper uses a similar idea. Let 
θE and θD denote the parameters of encoding network and decoding network, respectively,  
E(θE, c, s) be the output of encoding network on the carrier image c and the secret image s, and 
D(θD, c′ ) be the output of decoding network on the steganographic image c′ . Then, the 
encoding network’s loss LE can be summarized as, 

( , ( , , ))
    ( , ).

E EL MSE c E c s
MSE c c

θ=
′=                                             (1) 

The decoding network’s loss LD is as follow, 
( , ( , ))

    ( , ).
D DL MSE s D c

MSE s s
θ ′=

′=
                                              (2) 

where s’ represents the corresponding extracted secret image. So, the loss function of the 
proposed basic model can be given by, 

.Bas E DL L L= +                                                            (3) 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 1, January 2020                                    371 

3.2 Two Enhanced Models 
In order to improve the security and robustness of the proposed basic model, two enhanced 
models (secure model, secure and robust model) are proposed. The secure model inserts a 
steganalysis network into the basic model to enhance security against steganalysis, while the 
secure and robust model combines the secure model with an attack network to enhance 
robustness against some attacks further. In these two enhanced models, the encoding network 
can be regarded as a generator, while the steganalysis network can be seen as a discriminator. 
Thus, the combination of these two networks can be seen as an adversarial network. The 
architecture of the secure and robust model is shown in Fig. 3, while its attack network is 
presented in Fig. 4. The secure model only needs to remove the attack network. 
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Fig. 3. Architecture of the proposed secure and robust model. 
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Fig. 4. Architecture of the attack network. 

 

Specifically, as for the encoding network and decoding network, they are the same as those 
of the basic model given in Fig. 1. As for the steganalysis network, since XuNet performs well 
in steganalysis (please find more detail in Subsection 2.2), it is introduced into the basic model 
to enhance security against steganalysis. Moreover, inspired by Zhang et al [28], the global 
average pooling layer in XuNet is replaced by spatial pyramid pool (SPP) module because the 
SPP module can extract more features from different receptive fields. As for the attack 
network shown in Fig. 4, four types of attacks, i.e., mean filtering, Gaussian filtering, 
sharpening filtering and Gaussian noise, are simulated through network layers. Moreover, 
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these four types of attacks are implemented in four parallel branches. More specifically, the 
first three types of attacks are simulated by three convolutional layers with different 
convolutional kernels. The Gaussian noise attack is performed by adding a randomly 
generated Gaussian noise map to a steganographic image. Attack layers are inspired by the 
work of Zhu et al. [23]. 

The objectives of both two enhanced models are to optimize three networks: encoding 
network, decoding network and steganalysis network. So, their loss functions contain three 
parts corresponding to three networks.   

As for encoding network, the loss functions of two models are the same as the loss function 
of the basic model given in (1). 

As for decoding network, the loss function of the secure model is the same as that of the 
basic model given in (2). However, since the decoding network of the secure and robust model 
is followed by an attack network, the loss given in (2) should be modified as, 

1

1

1 ( ,  ( , ))

1    ( ,  ),

n

D D i
i
n

i
i

L MSE s D c
n

MSE s s
n

θ
=

=

′=

′=

∑

∑



                                       (4) 

where n represents the number of attacks considered, ic′ , i = 1,2, …, n, is the steganographic 
image after attack i, is′ , i = 1,2, …, n, is the corresponding extracted secret image. 

As for steganalysis network, it is associated with the encoding network, thus the 
combination of them can be seen as an adversarial network. Let θS denote the parameters of 
steganalysis network and S(θS, x) represent the output of steganalysis network on input image x. 
As is common with the implementation of discriminator in adversarial network, the 
steganalysis network’s loss LS is set to be sigmoid cross-entropy loss given by, 

log( ( , )) (1 ) log(1 ( , )),S S SL y S x y S xθ θ= − − − −             (5) 
where y = 0 if x = c′  and y = 1 if x = c. 

So, the loss function of the proposed secure model is given by, 
.Sec E D SL L L L= + +                                                        (6) 

The loss function of the proposed secure and robust model is given by, 
.SecRob E D SL L L L= + +                                                     (7) 

4. Experimental Results and Analysis 
In this section, we compare our steganography models with other existing deep learning-based 
models on ImageNet dataset [34] in terms of invisibility, security, robustness, and capacity. 
These compared existing deep learning-based models are Rehman’s model [25], Zhang’s 
basic model [28] and Zhang’s ISGAN [28]. All the deep learning-based models are performed 
on Python and Tensorflow framework with 11GB GeForce GTX 1080 Ti, 3.20 GHz i7-6900K 
CPU, and 65GB RAM. Moreover, they are trained by using Adam optimizer with a fixed 
learning rate of 0.0001, a batch size of 16 and 30000 iterations. 

4.1 Evaluation Metric and Experimental Dataset 
Peak Signal to Noise Ratio (PSNR) is considered to be the perceptual quality measure of 
steganographic images and extracted secret images and finally to measure the invisibility and 
robustness. The higher the PSNR value, the better the invisibility and robustness. Steganalysis 
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accuracy is used to measure the security against steganalysis. Steganalysis accuracy represents 
the probability that the steganalyzer can correctly identify whether an image is a 
steganographic image or not. The lower the accuracy, the better the security against 
steganalysis. Bits per pixel (bpp), the number of bits hidden in one pixel is used to measure the 
hiding capacity. The bigger the bpp value, the higher the capacity. 

As for the experimental dataset, we randomly select 8000 images from ImageNet dataset. 
Since the carrier image and secret image need to be the same resolution, the selected 8000 
images are adjusted to 300 × 300 pixels. Then, the selected 8000 images are divided into two 
disjoint sets: a training set contains 3000 image sets and a testing set contains 1000 image sets, 
where each image set consists of one carrier image and one secret image. Moreover, the secret 
images are the grayed version of selected images. Some examples of image sets are given in 
Fig. 5.  
 

              
(a)                                                           (b)                                                         (c) 

Fig. 5. Examples of testing image sets. For each set, the left color image is a carrier image and the right 
gray one is a secret image. 

 

4.2 Experiments and Analysis 
Firstly, the invisibility of the proposed models is evaluated. To this end, 1000 testing image 
sets are input into a well-trained model to generate 1000 steganographic images. The average 
PSNR values of 1000 steganographic images are provided in Table 1. It can be observed from 
Table 1 that: (a) our secure model achieves the best performance in invisibility. It is better 
than our basic model because the adversarial network with steganalysis considered in the 
secure model enhances the quality of steganographic images to resist steganalysis; (b) the 
secure and robust model performs worst among our three models because it considers 
robustness as well as invisibility and security. Hence, the consideration of robustness results in 
a trade-off between the quality of the steganographic image and the extracted secret image. 
However, our secure and robust model is still better than Rehman’s model [26], Zhang’s basic 
model [28], and Zhang’s ISGAN [28]. 

In order to apprehend the above numerical results better, the visual results (steganographic 
images) for six models are shown in Fig. 6, Fig. 7, and Fig. 8. These visual results are 
corresponding to the testing images given in Fig. 5. Moreover, in order to show the distortion 
clearly, these figures also present zoomed regions from the steganographic images. It can be 
seen from Fig. 6 to Fig. 8 that: (a) Rehman's model suffers from color distortion problem the 
most, while it is not the case for the proposed models mainly because only channel B is used 
for hiding; (b) In terms of distortion, our secure model shows the least distortion compared to 
the other five models, especially in the background regions; (c) these visual results are 
consistent with the numerical results given in Table 1 
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Table 1 PSNR (db) of steganographic images obtained from different models 

Model PSNR 

Rehman’s model [26] 30.47 

Zhang’s basic model [28] 33.92 

Zhang’s ISGAN [28] 34.31 

Our basic model 36.97 

Our secure model 37.35 

Our secure and robust model 34.07 

 

             
       (a) Rehman's model (31.53)          (b) Zhang’s basic model (33.63)            (c) Zhang’s ISGAN (34.14) 

             
(d) Our basic model (35.45)                (e) Our secure model (37.55)        (f) Our secure and robust model (34.28) 
Fig. 6. Steganographic images of Fig. 5(a) obtained from different models and their corresponding 

PSNR values. 

 

             
(a) Rehman's model (28.42)              (b) Zhang’s basic model (33.67)            (c) Zhang’s ISGAN (32.51) 

             
(d) Our basic model (35.87)                (e) Our secure model (38.02)      (f) Our secure and robust model (33.38) 

Fig. 7. Steganographic images of Fig. 5(b) obtained from different models and their corresponding 
PSNR values. 
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(a) Rehman's model (27.66)              (b) Zhang’s basic model (35.61)             (c) Zhang’s ISGAN (35.82) 

             
(d) Our basic model (37.59)                 (e) Our secure model (39.12)     (f) Our secure and robust model (36.82) 

Fig. 8. Steganographic images of Fig. 5(c) obtained from different models and their corresponding 
PSNR values. 

The proposed models are also tested in terms of security against steganalysis. For the 
purpose, a well-trained basic model is adopted to generate 5000 steganographic images on 
ImageNet. Then, the 5000 steganographic images and their corresponding carrier images 
constitute a dataset for retraining an improved XuNet steganalyzer used in [28]. After that, the 
trained steganalyzer is used to analyze the steganographic images obtained from different 
models. The average accuracies of the steganalyzer for different models are shown in Table 2 
The lower the accuracy, the better the security against steganalysis. As shown in Table 2 our 
secure model performs the best among six models. The main reasons are that: (a) our secure 
model considers steganalysis during the training phase compared to Rehman’s model [26], 
Zhang’s basic model [28] and our basic model; (b) our secure model does not consider 
robustness during the training phase compared to our secure and robust model. 

 

Table 2. Average accuracy of steganalyzer for steganographic images obtained from different models 

Model Accuracy 

Rehman’s model [26] 0.7833 

Zhang’s basic model [28] 0.7702 

Zhang’s ISGAN [28] 0.7328 

Our basic model 0.7682 

Our secure model 0.7248 

Our secure and robust model 0.7413 

 
Then, the robustness of the proposed models is evaluated. To do so, the steganographic 

images obtained from different models are attacked by additive Gaussian noise with 
standard deviation 1.0, sharpening filtering with 3×3 mask, mean filtering with 3×3 mask, and 
Gaussian filtering with 3×3 mask of standard deviation 1.0, respectively. Then, the secret 
images are extracted from these attacked steganographic images. Some examples for different 
models under different types of attacks are shown in Fig. 9, Fig. 10, and Fig. 11, while the 
average PSNR values of all extracted secret images are presented in Table 3 It can be 
observed from Table 3and Figs. 9-11 that: (a) our secure and robust model is significantly 
more robust to four kinds of attacks than the other five models because it considers these four 
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kinds of attacks during the training phase; (b) although our secure and robust model is not 
better than the other five models in the situation without attack, its extracted secret images still 
maintain high quality. 

 

      

      

      

      

      
(a) Rehman's model (b) Zhang’s basic model (c) Zhang’s ISGAN (d) Our basic model (e) Our secure model (f) Our 

secure and robust model 
Fig. 9. Secret images extracted from steganographic images in Fig. 6 after different attacks. For rows, 
from top to down, no attack, mean filtering, sharpening filtering, Gaussian filtering, and Gaussian noise 

 

Table 3. PSNR of extracted secret images extracted under different attacks 

Model No 
attack 

Mean 
filtering 

Sharpening 
filtering 

Gaussian 
filtering 

Gaussian 
noise 

Rehman’s model [26] 36.24 11.15 10.42 7.93 16.76 

Zhang’s basic model [28] 32.65 8.51 9.27 7.01 14.41 

Zhang’s ISGAN [28] 32.16 8.07 11.91 15.04 12.53 

Our basic model 31.38 10.51 6.14 13.22 15.35 

Our secure model 31.08 7.56 3.93 15.01 16.57 

Our secure and robust model 29.72 24.65 28.26 26.25 28.49 
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(a) Rehman's model (b) Zhang’s basic model (c) Zhang’s ISGAN (d) Our basic model 

 (e) Our secure model (f) Our secure and robust model 
Fig. 10. Secret images extracted from steganographic images in Fig. 7 after different attacks. For rows, 
from top to down, no attack, mean filtering, sharpening filtering, Gaussian filtering, and Gaussian noise. 
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(a) Rehman's model (b) Zhang’s basic model (c) Zhang’s ISGAN (d) Our basic model (e) Our secure model (f) Our 

secure and robust model 
Fig. 11. Secret images extracted from steganographic images in Fig. 8 after different attacks. For rows, 
from top to down, no attack, mean filtering, sharpening filtering, Gaussian filtering, and Gaussian noise 

 
 

Finally, as for the hiding capacity, our three models achieve 8 bpp by hiding a secret image 
with 300 × 300 × 8 bits into a carrier image with the resolution 300 × 300. Although the 
models of Rehman et al. [26] and Zhang et al. [28] also obtain 8 bpp hiding capacity, 
Rehman’s model [26] does not consider security against steganalysis and robustness against 
attack during the training phase, while Zhang’s ISGAN [28] does not consider robustness. So, 
our secure and robust model performs better than Rehman’s model [26] and Zhang’s ISGAN 
[28] in robustness as shown in Table 3 and Figs. 9-11, and is better than Rehman’s model [26] 
in security against steganalysis as shown in Table 2. Moreover, Rehman’s model [26] suffers 
from the problem of color distortion as shown in Figs. 6-8. 

5. Conclusion 
Three steganography models, i.e., the basic model, the secure model, and the secure and robust 
model, have been designed for different cases by using adversarial network. All of them 
realize the functions of high-capacity secret information hiding and extraction. The secure 
model can also make steganalysis more difficult, while the secure and robust model not only 
can make steganalysis more difficult but also is robust against some attacks. The experimental 
results show that the secure model as well as secure and robust model have an overall better 
performance than some existing models. The main reasons are that: (a) the proposed three 
models use the concat operation to combine a carrier image and a secret image with the same 
resolution, moreover, it hides the secret image into the channel B of carrier image only to 
resolve the problem of color distortion; (b) the secure model combines the steganalysis 
network with the basic model to enhance its security against steganalysis; (c) the secure and 
robust model considers the attack network besides the steganalysis network to enhance its 
robustness against some attacks further. For future work, more kinds of attacks will be 
considered to improve the robustness further, such as JPEG compression, geometric attacks 
and so on. 
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