• Title/Summary/Keyword: Network based robot

Search Result 569, Processing Time 0.026 seconds

Multiple Human Recognition for Networked Camera based Interactive Control in IoT Space

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.39-45
    • /
    • 2019
  • We propose an active color model based method for tracking motions of multiple human using a networked multiple-camera system in IoT space as a human-robot coexistent system. An IoT space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of IoT space as well. One of the main goals of IoT space is to assist humans and to do different services for them. In order to be capable of doing that, IoT space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly. In the environment where many camera modules are distributed on network, it is important to identify object in order to track it, because different cameras may be needed as object moves throughout the space and IoT space should determine the appropriate one. This paper describes appearance based unknown object tracking with the distributed vision system in IoT space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

Indirect Adaptive Control of Nonlinear Systems Using a EKF Learning Algorithm Based Wavelet Neural Network (확장 칼만 필터 학습 방법 기반 웨이블릿 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Kim Kyoung-Joo;Choi Yoon Ho;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.720-729
    • /
    • 2005
  • In this paper, we design the indirect adaptive controller using Wavelet Neural Network(WNN) for unknown nonlinear systems. The proposed indirect adaptive controller using WNN consists of identification model and controller. Here, the WNN is used in both Identification model and controller The WNN has advantage of indicating the location in both time and frequency simultaneously, and has faster convergence than MLPN and RBFN. There are several training methods for WNN, such as GD, GA, DNA, etc. In this paper, we present the Extended Kalman Filter(EKF) based training method. Although it is computationally complex, this algorithm updates parameters consistent with previous data and usually converges in a few iterations. Finally, ore illustrate the effectiveness of our method through computer simulations for the Buffing system and the one-link rigid robot manipulator. From the simulation results, we show that the indirect adaptive controller using the EKF method has better performance than the GD method.

Implementation of Camera-Based Autonomous Driving Vehicle for Indoor Delivery using SLAM (SLAM을 이용한 카메라 기반의 실내 배송용 자율주행 차량 구현)

  • Kim, Yu-Jung;Kang, Jun-Woo;Yoon, Jung-Bin;Lee, Yu-Bin;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.687-694
    • /
    • 2022
  • In this paper, we proposed an autonomous vehicle platform that delivers goods to a designated destination based on the SLAM (Simultaneous Localization and Mapping) map generated indoors by applying the Visual SLAM technology. To generate a SLAM map indoors, a depth camera for SLAM map generation was installed on the top of a small autonomous vehicle platform, and a tracking camera was installed for accurate location estimation in the SLAM map. In addition, a convolutional neural network (CNN) was used to recognize the label of the destination, and the driving algorithm was applied to accurately arrive at the destination. A prototype of an indoor delivery autonomous vehicle was manufactured, and the accuracy of the SLAM map was verified and a destination label recognition experiment was performed through CNN. As a result, the suitability of the autonomous driving vehicle implemented by increasing the label recognition success rate for indoor delivery purposes was verified.

Evolving Cellular Automata Neural Systems(ECANS 1)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.158-163
    • /
    • 1998
  • This paper is our first attempt to construct a information processing system such as the living creatures' brain based on artificial life technique. In this paper, we propose a method of constructing neural networks using bio-inspired emergent and evolutionary concept, Ontogeny of living things is realized by cellular automata model and Phylogeny that is living things adaptation ability themselves to given environment, are realized by evolutionary algorithms. Proposing evolving cellular automata neural systems are calledin a word ECANS. A basic component of ECANS is 'cell' which is modeled on chaotic neuron with complex characteristics, In our system, the states of cell are classified into eight by method of connection neighborhood cells. When a problem is given, ECANS adapt itself to the problem by evolutionary method. For fixed cells transition rule, the structure of neural network is adapted by change of initial cell' arrangement. This initial cell is to become a network b developmental process. The effectiveness and the capability of proposed scheme are verified by applying it to pattern classification and robot control problem.

  • PDF

An Implementation of Vector Control of AC Servo Motor based on Optical-EtherCAT Network (광-ETherCAT 네트워크 기반 PMSM의 벡터제어 구현)

  • Kim, Yong-Jin;Kim, Kwang-Heon;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.583-588
    • /
    • 2013
  • In this paper we propose implement technique of vector current control in order to verify performance of an AC servo driver that is able to easy control of motion with multi-axis in the robot. In doing do, we have developed the AC servo driver to driving PMSM, and then we confirm that this driver whether operating or not normally by controlling of vector current. The vector current control was performed at the no load condition in PMSM. Then we compare command control and tracking control. As a result of verification, we recognize we get a satisfactory result.

Bluetooth Network for Mobile System Control (이동 시스템 제어를 위한 블루투스 네트워크)

  • 임준홍;곽재혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1052-1057
    • /
    • 2004
  • Bluetooth technology is essentially a method for wireless connectivity of a diverse set of devices ranging from PDAs, mobile phone, notebook computers, to another equipments, The bluetooth system both point-to point connection and point-to multipoint connection. In point-to multipoint connection, the channel is shared among several bluetooth devices. Two or more devices sharing the same channel form a piconet. There one master device and up to seven active slave devices in a piconet. The radio operates in the unlicensed 2.45GHz ISM band. This allows users who travel world-wide to use bluetooth equipments anywhere. Since the link is based on frequency-hop spread spectrum, multiple channels can exist at the same time. The bluetooth standard ha s been suggested that bluetooth equipments can be used in the short-range, maximum 100 meters. It has been defined that the time takes to setup and establish a bluetooth connection among devices is 10 seconds. It is a long time and may be a cause to lose a chance of finding other non-fixed devices. We propose a routing protocols for scatternets which can be used to control a mobile units(MUs) in this network. The proposed routing protocol is composed of two kinds of bluetooth information, access point(AP) and MU.

Development of Driver's Safety/Danger Status Cognitive Assistance System Based on Deep Learning (딥러닝 기반의 운전자의 안전/위험 상태 인지 시스템 개발)

  • Miao, Xu;Lee, Hyun-Soon;Kang, Bo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.38-44
    • /
    • 2018
  • In this paper, we propose Intelligent Driver Assistance System (I-DAS) for driver safety. The proposed system recognizes safety and danger status by analyzing blind spots that the driver cannot see because of a large angle of head movement from the front. Most studies use image pre-processing such as face detection for collecting information about the driver's head movement. This not only increases the computational complexity of the system, but also decreases the accuracy of the recognition because the image processing system dose not use the entire image of the driver's upper body while seated on the driver's seat and when the head moves at a large angle from the front. The proposed system uses a convolutional neural network to replace the face detection system and uses the entire image of the driver's upper body. Therefore, high accuracy can be maintained even when the driver performs head movement at a large angle from the frontal gaze position without image pre-processing. Experimental result shows that the proposed system can accurately recognize the dangerous conditions in the blind zone during operation and performs with 95% accuracy of recognition for five drivers.

Development of Traffic Congestion Prediction Module Using Vehicle Detection System for Intelligent Transportation System (ITS를 위한 차량검지시스템을 기반으로 한 교통 정체 예측 모듈 개발)

  • Sin, Won-Sik;Oh, Se-Do;Kim, Young-Jin
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2010
  • The role of Intelligent Transportation System (ITS) is to efficiently manipulate the traffic flow and reduce the cost in logistics by using the state of the art technologies which combine telecommunication, sensor, and control technology. Especially, the hardware part of ITS is rapidly adapting to the up-to-date techniques in GPS and telematics to provide essential raw data to the controllers. However, the software part of ITS needs more sophisticated techniques to take care of vast amount of on-line data to be analyzed by the controller for their decision makings. In this paper, the authors develop a traffic congestion prediction model based on several different parameters from the sensory data captured in the Vehicle Detection System (VDS). This model uses the neural network technology in analyzing the traffic flow and predicting the traffic congestion in the designated area. This model also validates the results by analyzing the errors between actual traffic data and prediction program.

Blockchain and Physically Unclonable Functions Based Mutual Authentication Protocol in Remote Surgery within Tactile Internet Environment

  • Hidar, Tarik;Abou el kalam, Anas;Benhadou, Siham;Kherchttou, Yassine
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.15-22
    • /
    • 2022
  • The Tactile Internet technology is considered as the evolution of the internet of things. It will enable real time applications in all fields like remote surgery. It requires extra low latency which must not exceed 1ms, high availability, reliability and strong security system. Since it appearance in 2014, tremendous efforts have been made to ensure authentication between sensors, actuators and servers to secure many applications such as remote surgery. This human to machine relationship is very critical due to its dependence of the human live, the communication between the surgeon who performs the remote surgery and the robot arms, as a tactile internet actor, should be fully and end to end protected during the surgery. Thus, a secure mutual user authentication framework has to be implemented in order to ensure security without influencing latency. The existing methods of authentication require server to stock and exchange data between the tactile internet entities, which does not only make the proposed systems vulnerables to the SPOF (Single Point of Failure), but also impact negatively on the latency time. To address these issues, we propose a lightweight authentication protocol for remote surgery in a Tactile Internet environment, which is composed of a decentralized blockchain and physically unclonable functions. Finally, performances evaluation illustrate that our proposed solution ensures security, latency and reliability.

Digital Customized Automation Technology Trends (디지털 커스터마이징 자동화 기술 동향)

  • Song, Eun-young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.790-798
    • /
    • 2021
  • With digital technology innovation, increased data access and mobile network use by consumers, products and services are changing toward pursuing differentiated values for personalization, and personalized markets are rapidly emerging in the fashion industry. This study aims to identify trends in digital customized automation technology by deriving types of digital customizing and analyzing cases by type, and to present directions for the development of digital customizing processes and the use of technology in the future. As a research method, a literature study for a theoretical background, a case study for classification and analysis of types was conducted. The results of the study are as follows. The types of digital customizing can be classified into three types: 'cooperative customization', 'selective composition and combination', 'transparent suggestion', and automation technologies shown in each type include 3D printing, 3D virtual clothing, robot mannequin, human automatic measurement program, AR-based fitting service, big data, and AI-based curation function. With the development of digital automation technology, the fashion industry environment is also changing from existing manufacturing-oriented to consumer-oriented, and the production process is rapidly changing with IT and artificial intelligence-based automation technology. The results of this study hope that digital customized automation technology will meet various needs of personalization and customization and present the future direction of digital fashion technology, where fashion brands will expand based on the spread of digital technology.