• Title/Summary/Keyword: Network Utility Maximization Problem

Search Result 12, Processing Time 0.019 seconds

On the Formulation and Optimal Solution of the Rate Control Problem in Wireless Mesh Networks

  • Le, Cong Loi;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.295-303
    • /
    • 2007
  • An algorithm is proposed to seek a local optimal solution of the network utility maximization problem in a wireless mesh network, where the architecture being considered is an infrastructure/backbone wireless mesh network. The objective is to achieve proportional fairness amongst the end-to-end flows in wireless mesh networks. In order to establish the communication constraints of the flow rates in the network utility maximization problem, we have presented necessary and sufficient conditions for the achievability of the flow rates. Since wireless mesh networks are generally considered as a type of ad hoc networks, similarly as in wireless multi-hop network, the network utility maximization problem in wireless mesh network is a nonlinear nonconvex programming problem. Besides, the gateway/bridge functionalities in mesh routers enable the integration of wireless mesh networks with various existing wireless networks. Thus, the rate optimization problem in wireless mesh networks is more complex than in wireless multi-hop networks.

Maximizing Network Utility and Network Lifetime in Energy-Constrained Ad Hoc Wireless Networks

  • Casaquite, Reizel;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1023-1033
    • /
    • 2007
  • This study considers a joint congestion control, routing and power control for energy-constrained wireless networks. A mathematical model is introduced which includes maximization of network utility, maximization of network lifetime, and trade-off between network utility and network lifetime. The framework would maximize the overall throughput of the network where the overall throughput depends on the data flow rates which in turn is dependent on the link capacities. The link capacity on the other hand is a function of transmit power levels and link Signal-to-Interference-plus-Noise-Ratio (SINR) which makes the power allocation problem inherently difficult to solve. Using dual decomposition techniques, subgradient method, and logarithmic transformations, a joint algorithm for rate and power allocation problems was formulated. Numerical examples for each optimization problem were also provided.

The Network Utility Maximization Problem with Multiclass Traffic

  • Vo, Phuong Luu;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.219-221
    • /
    • 2012
  • The concave utility in the Network Utility Maximization (NUM) problem is only suitable for elastic flows. In networks with multiclass traffic, the utility can be concave, linear, step or sigmoidal. Hence, the basic NUM becomes a nonconvex optimization problem. The current approach utilizes the standard dual-based decomposition method. It does not converge in case of scarce resource. In this paper, we propose an algorithm that always converges to a local optimal solution to the nonconvex NUM after solving a series of convex approximation problems. Our techniques can be applied to any log-concave utilities.

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

Opportunistic Scheduling Schemes for Elastic Services in OFDMA Systems (OFDMA 시스템에서 Elastic 서비스를 위한 Opportunistic 스케줄링 기법)

  • Kwon, Jeong-Ahn;Lee, Jang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.76-83
    • /
    • 2009
  • In this paper, we provide opportunistic scheduling schemes for elastic services in OFDMA systems with fairness constraints for each user. We adopt the network utility maximization framework in which a utility function is defined for each user to represent its level of satisfaction to the service. Since we consider elastic services whose degree of satisfaction depends on its average data rate, we define the utility function of each user as a function of its average data rate. In addition, for fair resource allocation among users, we define fairness requirements of each user by using utility functions. We first formulate an optimization problem for each fairness requirement that aim at maximizing network utility, which is defined as the sum of utilities of users. We then develop an opportunistic scheduling scheme for each fairness requirement by solving the problem using a dual approach and a stochastic sub-gradient algorithm.

Cross-layer Optimization for Multichannel Multiradio Multisession Wireless Networks with Network Coding (멀티채널 멀티라디오 멀티세션 무선 네트워크를 위한 네트워크 코딩 기반 계층간 최적화 기법)

  • Park, Museong;Yoon, Wonsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.18-24
    • /
    • 2013
  • Network coding has been extensively studied to increase the network throughput by exploiting the broadcast and overhearing capabilities. In this paper, we formulate a network utility maximization problem to improve the network utility in multichannel, multiradio and multisession wireless multihop network with intrasession network coding. To find the solution of this problem, we propose a congestion control, distributed rate control, and heuristic resource allocation algorithm. We find the network utility and evaluate the performance in multichannel, multiradio and multisession environment by using MATLAB. Finally, the results show that the proposed schemes can achieve throughput improvement by performing the network utility optimization in wireless multihop network.

The Scheduling Problem in Wireless Networks

  • Pantelidou, Anna;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.489-499
    • /
    • 2009
  • We describe the fundamental issue of scheduling the allocation of wireless network resources and provide several formulations of the associated problems. The emphasis is on scheduling transmission attempts. We place this problem in the context of existing approaches, like information theoretic and traditional network theoretic ones, as well as novel avenues that open up the possibility of addressing this issue for non-stationary and non-ergodic environments. We summarize concrete recent results for specific special cases that include unicast and multicast traffic, different objective functions, and reduced complexity versions of the problem. We conclude with some thoughts for future work. We identify and single out the cross-layer nature of the problem and include a simple physical-layer criterion in what is mostly a medium access control (MAC) problem.

Cross-Layer Resource Allocation in Multi-interface Multi-channel Wireless Multi-hop Networks

  • Feng, Wei;Feng, Suili;Zhang, Yongzhong;Xia, Xiaowei
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.960-967
    • /
    • 2014
  • In this paper, an analytical framework is proposed for the optimization of network performance through joint congestion control, channel allocation, rate allocation, power control, scheduling, and routing with the consideration of fairness in multi-channel wireless multihop networks. More specifically, the framework models the network by a generalized network utility maximization (NUM) problem under an elastic link data rate and power constraints. Using the dual decomposition technique, the NUM problem is decomposed into four subproblems - flow control; next-hop routing; rate allocation and scheduling; power control; and channel allocation - and finally solved by a low-complexity distributed method. Simulation results show that the proposed distributed algorithm significantly improves the network throughput and energy efficiency compared with previous algorithms.

Cross-layer Design of Routing and Link Capacity Extension for QoS in Communication Networks (통신망 QoS를 위한 라우팅과 용량 증설의 계층간 최적화 기법)

  • Shin, Bong-Suk;Lee, Hyun-Kwan;Park, Jung-Min;Kim, Dong-Min;Kim, Seong-Lyun;Lee, Sang-Il;Ahn, Myung-Kil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1749-1757
    • /
    • 2010
  • This paper considers the cost minimization problem to satisfy QoS (Quality of Service) requirements for a given network, in particular when communication resources to each link can be additionally assigned. For the purpose of quantifying QoS requirements such as data transfer delay and packet loss, we introduce the cost function considering both the link utilization factor and the additionally assigned resource. To minimize this cost function, we firstly formulate a Basic Capacity Planning (BCP) problem, a special case of Network Utility Maximization (NUM). We show that the solution of this BCP problem cannot be optimal via a counter example. In this paper, we suggest the cross-layer design of both additionally assigned resource and routing path, whose initial values are set to the result of BCP problem. This cross-layer design is based on a heuristic approach which presents an effective way to plan how much communication resources should be added to support the QoS requirements in future. By simulation study, we investigate the convergence of the cost function in a more general network topology as well as in a given simple topology.

Joint Congestion and Power Control Optimization for Wireless Ad-hoc Network in the Low-SINR Regime (낮은 SINR 상황의 무선 애드혹 네트워크를 위한 혼잡 제어와 전송 파워 제어의 복합 최적화 기법)

  • Kwak, Jae-Wook;Mo, Jeong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.1-7
    • /
    • 2006
  • This paper consider a code-division multiple-access(CDMA) wireless ad-hoc network in low-SINR regime. In previous research [6], there has been proposed a algorithm for achieving global optimum at high SINR regime, but has not been fully investigated at low-SINR regime. In this paper, we focus on a case where SINR is much smaller than 1, and propose a algorithm that is suitable for low-SINR regime.