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In this paper, an analytical framework is proposed for 
the optimization of network performance through joint 
congestion control, channel allocation, rate allocation, 
power control, scheduling, and routing with the 
consideration of fairness in multi-channel wireless multi-
hop networks. More specifically, the framework models 
the network by a generalized network utility 
maximization (NUM) problem under an elastic link data 
rate and power constraints. Using the dual decomposition 
technique, the NUM problem is decomposed into four 
subproblems — flow control; next-hop routing; rate 
allocation and scheduling; power control; and channel 
allocation — and finally solved by a low-complexity 
distributed method. Simulation results show that the 
proposed distributed algorithm significantly improves the 
network throughput and energy efficiency compared with 
previous algorithms. 
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I. Introduction 

A fundamental problem in networking is the allocation of 
limited resources among the users of a network. In the 
traditional layered network architecture, resources are allocated 
independently within each layer in the Open Systems 
Interconnection (OSI) model. This methodology has many 
advantages. For example, protocols in one layer can be 
designed, enhanced, or even replaced without any impact on 
other protocol layers. However, design problems that have 
been studied in isolation, such as routing, channel assignment, 
power control, topology control, and so on, are so closely 
linked through the reality of wireless interference. For example, 
it may happen that data packets are routed on a high 
interference path in the network. This necessitates the link 
scheduling to yield a high throughput schedule and the channel 
allocation to re-allocate appropriate channels along this path. 
This highlights the need for the designing of link scheduling, 
channel allocation, and routing as a joint problem. 

In fact, there has been a fast expansion of research interest in 
this area since Kelly first modeled the framework of cross-layer 
design as an NUM problem in his seminal work [1]. Motivated 
by it, the researches model the cross-layer resource allocation 
as different network utility maximization (NUM) problems, 
most of which are concerned with maximizing the data rate of 
each user [2]–[3], minimizing power consumption [4]–[5] and  
outage probability [6]. With these generalized objectives, 
problems between different layers are studied together. For 
example, a joint design of power control in the physical layer 
and congestion control in the transport layer for wireless ad hoc 
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networks was proposed in [7]. A jointly optimal channel 
assignment and congestion control problem for multi-channel 
wireless mesh networks was solved in [8]. In [9], Chen and 
others presented a jointly optimal design of cross-layer 
congestion control, routing, and scheduling for ad hoc 
networks. In [10], an analytical framework was introduced for 
the optimization of transmission control protocol performance 
through joint channel coding and power management in 
satellite communications. Reference [11] endeavored to 
address the lack of a joint routing and sleep scheduling scheme 
in wireless sensor networks by incorporating the design of the 
two components into one optimization framework. Reference 
[12] discussed a joint routing, congestion control, channel 
allocation, and scheduling algorithm for multi-channel multi-
interface wireless multi-hop networks. In addition, a joint 
multipath routing, channel allocation, and scheduling problem 
was discussed in [13] for wireless multi-hop and wireless 
multi-channel systems. References [14] to [17] are different 
research results on cross-layer design, proposed recently. 
However, cross-layer resource allocation has not been fully 
explored yet. None of these algorithms have jointly considered 
congestion control, channel allocation, rate allocation, power 
control, scheduling, and routing this complex problem. 

In this paper, we propose a distributed joint congestion 
control, channel allocation, rate allocation, power control, 
scheduling, and routing algorithm (JCCRPSR) for multi-radio 
multi-channel wireless multi-hop networks (MRMC-
WMHNs). The cross-layer resource allocation is modeled as 
an NUM problem with an elastic link data rate and power 
constraints. Using the dual decomposition technique, the NUM 
problem can be decomposed into the following four 
subproblems: flow control; next-hop routing; rate allocation 
and scheduling; power control; and channel allocation. Finally, 
these subproblems are solved with different low-complexity 
distributed methods.  

The rest of this paper is organized as follows. The system 
model and constrained optimization problem are described in 
Section II. The distributed algorithm is presented in Section III. 
Simulation results and discussions are presented in Section IV, 
and Section V concludes the paper. 

II. System Model and Problem Formulation 

1. Network Model 

Consider a WMHN that contains a set N  of nodes and a 

set L  of logical links. The nodes and links are labeled with 

the integer values 1, 2, ... ,n N= and the integer values 

1, 2, ... , ,l L= respectively. Let ,m n〈 〉  denote a 

bidirectional link, which contains two logical links, (m, n) and 

(n, m); that is, the connectivity between the nodes is assumed to 

be symmetric. The sets of incoming and outcoming logical 

links of node n are defined as in
nL ∈L  and 

out ,nL ∈L  

respectively. Similarly, the sets of in-neighbors and out-

neighbors of node n are labeled 
in in{ : ( , ) }n nN m m n L= ∈ and 

out out{ : ( , ) },n nN m n m L= ∈  respectively. Each node n is 

provided with In half-duplex wireless interfaces, and the set of 

logical links that use radio nk I∈  at node n is denoted by 

.k
nL  At any given time, each interface can be tuned to any one 

of C channels, and the set of available channels is denoted by 

{1, 2, ... , }.CΘ =  

Traffic flows are, in general, carried over multi-hop routes. A 

sequence of connected logical links ( )l L s∈  forms a route 

for flow ,s ∈S  where {1, 2, ... , }S=S  is the set of flows 

in the network. Let Sf ∈ F  be the transmission rate of flow s, 

where 1 2[ , , ... , ]Sf f f=F  is the set of transmission rate. 

For an arbitrary node n, let (s) 0nf ≥  denote the sth flow rate 

generated by node n. If node n is not the source node of flow s, 

then 
(s) 0;nf =  otherwise, 

(s) .n sf f=  

In addition, the link flow rate vector, R, is defined to be 
(1) (2) ( )[ , , , ],S
mn mn mnr r r= …R  in which the element signifies the 

rate for each flow on link (m, n). Based on this, the aggregated 

flow rate on link (m, n) can be denoted as ( ) .s
mn mns

r r
∈

= ∑ S  

The topology generation algorithm Hyacinth, proposed in [8], 

is used to form a logical topology that is free from the ripple 

effect. The general protocol interference model is adopted so 

that the conflict graph can be employed to capture the 

contention relations among links. The network is assumed to 

operate in slotted time, with the slots being normalized to a set 

of integer values t ( 1, 2, ...t = ). 

2. Problem Formulation 

The goal of the proposed algorithm is to solve the following 
optimization problem: 

max ( )ss
U f

∈∑
, SF,X P,R

             (1) 

s.t.             1 1, ,T
l l= ∀ ∈x L                (2) 

( )
1

,
C c

n nc
y I

=
≤∑                 (3) 

out

in out

max

( ) ( ) ( )

:( , ) , :( , ) ,

0 ,

,

n

s n s n

nm nm N

s s s
n mn nq

m m n L m N q n q L q N

P P

f r r

∈

∈ ∈ ∈ ∈

≤ ≤

+ ≤

∑
∑ ∑     (4) 

, , ,sn n d s∀ ∈ ≠ ∀ ∈N S              (5) 

( ) ( , ), ,s
l ll

s

r r C l
∈

= ≤ ∈∑
S

LX P            (6) 

and 
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2

( , )

log 1 , .
( )

l

l ll
T
l i i il li l

C

P g
B K l

P g n
≠

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ × ∈

⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦∑
L

X P

x x

(7) 

Equation (1) is the objective function. Here, the utility, U(fs), 
is equivalent to log fs [3] and is proved to be twice continuously 
differentiable, non-decreasing, and strictly concave. The 
objective function is used to implement proportional fairness 
among the flows. 

Equation (2) represents the channel constraint. A binary link-

channel allocation matrix, ,L C
L C R ×

× ∈X  is firstly defined. 

Then, let , , ... ,1 2[ ]Tl l l lL=x x x x  denote the lth row of X, in 

which the element is defined as follows: for any logical link 
l ∈L  and any channel ,c ∈ Θ  the element xlc is equal to one 
if channel c is allocated to logical link l; otherwise, it is equal to 
zero. 

According to this, the constraint in (2) denotes that only one 
frequency channel can be assigned to each given logical link l. 

Equation (3) indicates that the number of allocated channels 
to each node should be less than the number of network 
interface cards (NICs) equipped on the corresponding node. 
Here, 

( )c
ny  represents the binary node channel allocation 

variable, which is equal to one if channel c is allocated to 
logical node n; otherwise, it is equal to zero. 
■ Equation (4) is the power constraint for each node. 
■ Equation (5) is the flow conservation constraint; that is, for 

flow s, the sum of all incoming flows in a non-destination 
node (n) must be no less than the sum of all outgoing flows. 

■ Equation (6) is the link capacity constraint. The aggregated 
flow rate on each link should not exceed its link capacity. 

■ Equation (7) is the available link capacity. Here, the constant 

B is the transmission bandwidth on each channel, 

1 2/ log( ),K Eϕ ϕ= −  where 1ϕ  and 2ϕ  are constants 

depending on the modulation and E is the required bit error 

rate; gil denotes the path gain between the transmitter of link i 

and the receiver of link l; and nl is the additive thermal white 

noise power. 
Note that the NUM problem has binary variables X; real 

variables F and P; and mixed binary-real cubic constraints. It is 
a complex non-linear mixed integer programming problem. 
Here, the objective function is twice continuously differentiable, 
non-decreasing, and strictly concave. In addition, here, the 
constraints are all linear, except for those in (5) and (6). For the 
constraints in (5) and (6), binary linearization [18], and log-
transformed convex optimization techniques [7] are applied to 
transform Cl(X, P) into a linear function, as mentioned in our 
previous work [3]. Therefore, the NUM problem can be 
converted into a convex optimization problem so that the 

centralized manner, such as branch and bound algorithm, can 
be applied to find the global optimal solution of the NUM 
problem. The optimal solution is used as an ideal reference in 
Section IV. Next, we introduce a more practical distributed 
method to solve this NUM problem.  

III. Cross-Layer Design via Dual Decomposition 

Dual decomposition is used to solve the NUM problem. By 

introducing 
( ){ 0 for all , : }s
n sn s n dλ ≥ ≠  as the set of 

Lagrange multipliers to relax the constraint in (5), the dual to 

the primal NUM problem can be expressed as a max–min 

problem as follows: 

0
min ( ),D
λ

λ
≥

                 (8) 

with partial dual function 

( )

in out

0, 0

( ) ( ) ( ) ( )
, :

: , : ,

( ) max ( )
s

s mn

s
s n s n

ss Sf r

s s s s
n n mn nqs n n d

m mn L m N q nq L q N

D U f

f r r

λ

λ

∈≥ ≥

≠
∈ ∈ ∈ ∈

= −

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟
⎝ ⎠

∑

∑ ∑ ∑

(9) 
s. t. (2), (3), (4), (6), and (7). 

The optimization problem ( )D λ  in (9) can be directly 
decomposed into the following two subproblems: 

1
0

( ) max ( )
s

s s ss S s Sf
D U f fλ λ

∈ ∈≥
= −∑ ∑     (10) 

and 

( )

out in

2
0

( ) ( ) ( )
, :

: , : ,

( ) max
s

mn

s

s n s n

r

s s s
n nq mns n n d

q nq L q N m mn L m N

D

r r

λ

λ

≥

≠
∈ ∈ ∈ ∈

=

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
 (11) 

s. t. (2), (3), (4), (6), and (7).  

If ( ) 0s
nλ ≥  is interpreted as the congestion price, then (10) 

is considered as a congestion control problem, while (11) is a 
joint routing, scheduling, power control and channel allocation 
problem. The two interact through the congestion price ( )s

nλ .  
For congestion price ( )s

nλ , the subgradient algorithm is 
employed to solve it. By taking the derivative of ( )D λ with 
respect to λ , we obtain the following: 

out in

( ) ( ) ( )

: , : ,

( )
s n s n

s s s
n nq mn n

q nq L q N m mn L m N

D r r fλ
∈ ∈ ∈ ∈

∇ = − −∑ ∑  (12) 

So, the congestion price ( )s
nλ can be updated as 

( ){ }( ) ( )( 1) ( ) ( ) ,0 ,s s
n n nt t Dλ λ η λ

+
+ = − ×∇      (13) 

where fs and ( )s
mnr  are the solutions of (10) and (11), 

respectively;{ },0 max( ,0)
+⋅ = ⋅ ;η  is a sufficiently small step 
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size, and t is an iteration time slot. 
According to (10), with known ( ){ 0 , : },s

n sn s n dλ ≥ ∀ ≠  
the congestion control problem can be solved at each iteration 
time slot by 

  ( 1) ' 1( ),t
s s sf U λ+ −=              (14) 

where ' 1( )sU − ⋅  is the inverse of the first derivative of the utility.  
For problem (11), it is a queue length–based model with a 

feasible-rate region constraint. It can be transformed into the 
following formula: 

out in

( ) ( ) ( )
, :

: , : ,

( ) ( ) ( )( );

s
s n s n

s

s s s
n nq mns n n d

q nq L q N m mn L m N

s s s
mq m q

mq L

r r

r

λ

λ λ

≠
∈ ∈ ∈ ∈

∈

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

= −

∑ ∑ ∑

∑
 (15) 

that is,  

( )

( ) ( ) ( )
2

0
( ) max ( )

s
mn

s s s
mq m q

r mq L

D rλ λ λ
≥ ∈

= −∑       (16) 

s. t. (2), (3), (4), (6), and (7).  

For each link (m, q), we find s* such that 
* ( ) ( )arg max( ),s s

m q
s

s λ λ
∈

= −
S

            (17) 

where ( ) ( ) ( )s s s
mq m qλ λ λ= −  is the differential price on link (m, q). 

To maximize ( ) ( ) ( )( ),s s s
mq m qmq L

r λ λ
∈

−∑  all available link 

capacity should be allocated to the flow s* that has the largest 

differential price, ( ) ,s
mqλ  that fits the dynamic back pressure 

(DBP) [9] scheduling algorithm well. It implies that for each 

link (m, q), ( ) ( , )s
mq mqr C= X P  if s = s* and ( ) 0s

mqr =  

otherwise. Therefore, (16) is equivalent to the following 
capacity maximization problem: 

*( )
3

,
( ) max ( )s

ll
l L

D Cλ λ
∈

= ∑
X P

X,P          (18) 

s. t. (2), (3), (4), and (7).  

1. Joint Channel Allocation and Power Control 

The objective in (18) is to maximize the whole weighted 
capacity by assigning the channel and power to the network 
links according to the congestion price information. To 
decouple the optimization variables X and P, we can directly 
decompose (18) into two subproblems: congestion-aware 
channel allocation and congestion-aware power control.  

A. Congestion-Aware Channel Allocation Subproblem 

*( )
4 ( ) max ( )s

ll
l

D Cλ λ
∈

= ∑
LX

X  

( )
1

2

s. t. 1 1, , ,

( ) log 1 , ,
( )

CT c
l n nc

l ll
l T

l i i il li l

l y I

P g
C B K l

P g n

=

∗

∗
≠

= ∀ ∈ ≤

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + × ∈

⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

∑

∑

x

X
x x

L

L
 

(19) 
where , ,lP l∗ ∀ ∈L is obtained from solving the power 
control subproblem (20). The local implementation of (19) is 
given by 

*( )
5

,

( )
1

2

( ) max ( )

s. t. 1 1, , ,

( ) log 1 , .
( )

l n

s
ll

l L l

CT c
l n nc

l ll
l T

l i i il li l

D C

l y I

P g
C B K l

P g n

λ λ
∈ ∈

=

∗

∗
≠

=

= ∀ ∈ ≤

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + × ∈

⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

∑

∑

∑

x
X

x

X
x x

L

L

L

 

(20) 
The local implementation process is asynchronous. Each 

node (n) is responsible for assigning the optimal channels to 
some local links nL ⊂ L and periodically exchanges its 
individual channel usage , ,l nl L∀ ∈x and collected 
data , ,l nl Lλ ∀ ∈ with all other nodes.  

B. Congestion-Aware Power Control Subproblem 

*

out

( )
5

max

2 *

( ) max ( )

s. t. 0 ,

( ) log 1 , ,
( )

n

s
ll

l L

nm nm N

l ll
l T

l i i il li l

D C

P P

P g
C B K l

P g n

λ λ
∈

∈

∗
≠

=

≤ ≤

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + × ∈

⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

∑

∑

∑

P
P

P
x x

L

 

(21) 

where , ,l l L∗ ∀ ∈x are obtained from solving the local channel 

allocation subproblem (20). Equation (21) can be solved 

distributively by the algorithm proposed in [17]. We describe it 

as follows. 
Step 1. At the iterative time slot t, the transmitter of link 

l ∈L  calculates a power message 

( )
( ) ,

( )
l l

l
l ll

I t
m t

P t g

λ
=              (22) 

where Il denotes the signal-to-interference-plus-noise ratio; Il 
and gll are measured locally. 

Step 2. The power message ml(t) is passed to all the other 
nodes through a flooding protocol. 

Step 3. Each transmitter adjusts its power as 

( )
( 1) ( ) ( ) ,

( )
l

l l il i
l i l

t
P t P t g m t

P t

λ
β

≠

⎛ ⎞
+ = + −⎜ ⎟

⎝ ⎠
∑      (23) 
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where 0β >  is a constant step size. 
Step 4. Let t = t + 1. Return to Step 1 until convergence. 
This algorithm is proved to converge to the global optimum 

solution 
* * * *

1 2[ , , ... , ]LP P P=P  in [17] for a small enough 

positive constant β . 

2. Distributed Scheduling 

Let j
mL ⊂ L  denote the set of links connecting to the jth 

interface of node m. For a bidirectional link , ,m n〈 〉  define 

, max{ , }m n mn nmλ λ λ< > =  as the largest differential price. 

Assume that interface j m∈  operates on channel i, which is 

pre-allocated by the local channel allocation algorithm. The 

distributed scheduling algorithm can be briefly described as 

follows. 

Each interface j m∈  carries out the following steps: 

A. Find neighbor 
*

,
:( , )

arg max
j
m

m n
n m n L

n λ< >
∈

=  with free interface  

u, free channel i, and such that it satisfies 

*
*( , ) .j u

m n
m n L L= ∩  

• If having received the matching request from the interface 
u of node n*, then node m accepts link *,m n〈 〉  as a 
matched link and sends back a matched reply. At the 
same time, node m sends a drop message about the 
interface j and channel i to all other neighbors with free 
interfaces and channels. 

• Otherwise, node m sends a matching request to node n*. 
B. Upon receiving a matching request information from 

neighbor n, the following is carried out: 
• If n = n* and channel i is free, then node m accepts the 

request and sends back a matched reply. At the same time, 
node m sends a drop message about the interface j and 
channel i to all other neighbors with free interfaces and 
channels.  

• Otherwise, node m just stores the message. 
C. Upon receiving information of a matched reply from 

neighbor n, node m sends a drop message about the 
interface j and channel i to all other neighbors with free 
interfaces and channels. 

D. Upon receiving a drop message form neighbor n, node m 
updates the free information of the interface and channel by 
deleting the interface j and the channel i.  

E. If node m is busy or has no free neighbors, then it keeps the 
current state. Otherwise, it takes action according to the 
aforementioned steps A–D. 

F. The matched links are allowed to transmit with the allocated 
rate 

* * *
( ) ( , ) if ,

0 otherwise.

mqs
mq

C s s
r

⎧ =⎪= ⎨
⎪⎩

X P
         (24) 

According to the above discussion, the main idea of this 
algorithm is to activate the local bidirectional link with the 
maximum differential price. 

3. Distributed JCCRPSR 

The proposed JCCRPSR can be described as follows: 
A. The network topology is initially generated by using the 

Hyacinth algorithm in [8] and [1 0  0], ,l l L= ∀ ∈x  is 
set. 

B. During each iteration time slot t, the following three 
operations are carried out simultaneously:  
• Each transmitter n ∈N updates the congestion price 

{ }out, ,n l nl Lξ ξ= ∀ ∈  power message 

out{ , },n l nm m l L= ∀ ∈  and power price 

{ }out, .n l nl Lζ ζ= ∀ ∈  

• Each transmitter n ∈N sends lξ  back to the source 
nodes of the flows if link l is on the paths of the flows. 

• Each transmitter passes mn to the corresponding 
transmitters by the routing protocol. 

C. In the time slots that belong to the set , ,D nΓ  each node 
n ∈N  carries out the following algorithms at a period of 
TD time slots:  
• If the node belongs to the source node of a flow, then the 

node updates the 
*
sf  according to equation (14). 

• Each node updates the local channel allocation according 
to (20) and informs the results to other nodes in the 
network. 

• Each transmitter updates the transmitted power according 
to equation (23). 

• Each node n allocates 
( )s
nmr  according to the scheduling 

algorithm. According to the rate offered by the scheduling, 

the routing is determined. 

In JCCRPSR, each node calculates five parameters: 

congestion price ( )nξ , power message (mn), power price 

( )nζ , traffic rate (fs), and transmitted power (Pl). The 

JCCRPSR then solves the local congestion-aware channel 

allocation subproblem and scheduling problem. For any node 

,n ∈N  the computational complexity of the parameters 

,nξ  mn, ,nξ  fs, and Pl is linear. The local channel-allocation 

subproblem is a combinatorial optimization problem, with at 

most 
maxVC  combinations, where max = max .n

n
V L

∈N
 The 

complexity of the scheduling problem is O(0.5L). So, the 
whole computational complexity is max(5 + 0.5 )VO C L+ .  
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In addition, the convergence of the joint congestion control, 
routing, and scheduling algorithm is proved in [9]. The 
congestion-aware channel allocation algorithm can at least 
converge to the local optimal solutions. While the distributed 
power control subproblem can be solved with zero duality gap. 
So, the proposed distributed algorithm is guaranteed to be 
convergent. Since the congestion-aware channel allocation 
subproblem is sub-optimal, the global optimality of the 
proposed algorithm is not guaranteed. The sub-optimality and 
convergence of the proposed algorithm is investigated further 
in the next section. 

IV. Simulation Results and Discussion 

In this section, the proposed distributed JCCRPSR is 
compared with the joint congestion control, channel allocation, 
scheduling, and routing algorithm (JCCSR) in [11] and the 
centralized optimal algorithm. In the JCCSR, each node 
computes three parameters: two Lagrange multipliers and a 
traffic rate (fs). It then computes both a local selfish channel 
allocation subproblem and a greedy centralized scheduling 
subproblem. The JCCRPSR and JCCSR algorithms are 
simulated using MATLAB, and the centralized algorithm is 
solved with MOSEK [19]. 

In the simulation model, the size of the network field is  
700 m × 700 m. Fifteen wireless nodes are generated randomly. 
The communication and interference ranges are 250 m and  
450 m, respectively. Once the physical topology is created, a 
ripple effect–free logical topology can be formed by using the 
algorithm proposed in [8]. Two thousand time slots are 
simulated. The parameters used in the simulations are listed in 
Table 1. 

1. Comparison with JCCSR 

The performance among the optimal, JCCSR, and 
JCCRPSR algorithms is firstly compared in terms of network 
utility and energy efficiency, which are defined as 

log ss
f

∈∑ S  and s ls l
f P

∈ ∈∑ ∑S L , respectively. 

 

Table 1. List of simulation parameters. 

Received noise power (nl) 1.0 × 10–11 W 

Signal wavelength (λ) 0.0517 m 

Channel bandwidth (B) 2 Mbps 

Processing gain (K) 128 

Step size of congestion price update (η) 0.01 

Maximum power constraint (Pmax) 0.5 W 

 

 

Fig. 1. Evolution of network utility. 
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Figure 1 shows the evolution of the network utility. The 
number of NICs and non-overlapping channels is denoted by  
I and C, respectively. We can see that the JCCRPSR converges 
to a relatively stable value within a short time. The utility of the 
JCCRPSR with I = 2, C = 4, and I = 4, C = 6, reaches nearly 
98.47% and 99.12% of the optimal values, respectively. Thus, 
the proposed JCCRPSR algorithm can lead to a near-optimal 
solution for the NUM problem. The utility of the JCCSR with  
I = 2, C = 4, and I = 4, C = 6, reaches 89.94% and 90.63% of 
the optimal values, respectively. It is obvious that the 
JCCRPSR shows better performance than the JCCSR. The 
reason for this is that, on the one hand, the JCCRPSR adjusts the 
transmit power to reduce the interference to the bottleneck links 
by a power control strategy, whereas on the other hand, the 
congestion-aware channel allocation strategy of the JCCRPSR 
takes congestion control and whole system capacity into 
consideration, while the channel allocation strategy of the 
JCCSR just tries to alleviate any local congestion. 

Figure 2 shows the evolution of the energy efficiency. The 
JCCRPSR takes more time to converge to the suboptimal 
value compared to the JCCSR. However, the JCCRPSR with  
I = 2, C = 4 and I = 4, C = 6, converges to nearly 96.4% and 
97.59% of the optimal values, respectively, while the JCCSR 
with I = 2, C = 4 and I = 4, C = 6, only converges to nearly 
57.97% and 60.24% of the optimal values, respectively. This is 
because the JCCRPSR needs to coordinate the power for each 
lnk; hence, it takes more time to converge. Nonetheless, each 
node optimally adjusts the transmit power and hence the 
energy efficiency is improved. 

2. Impact of Available Power 

To evaluate the impact of the maximum power constraints, 
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Fig. 2. Evolution of energy efficiency. 
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Fig. 3. Impact of available power. 
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we vary the maximum power constraint from 0.05 W to 1 W.  

Figure 3 shows the utility-power trade-off curves. As we can 
see from the figure, with the increasing of the maximum power 
constraint, the utilities of the JCCRPSR and JCCSR algorithms 
increase, and the network utility increments are decreasing. In 
addition, the proposed JCCRPSR algorithm achieves a better 
utility performance, since the JCCSR doesn’t have a power 
control strategy.  

V. Conclusion 

In this paper, we have studied the problem of joint 
congestion control, channel allocation, rate allocation, power 
control, scheduling, and routing with the consideration of 
fairness in multi-channel wireless multi-hop networks. A 
suboptimal distributed algorithm based on dual composition 
has been proposed. Simulation results have been presented to 
demonstrate the performance of the proposed scheme.  

For future work, we plan to extend our algorithm to a 
dynamic network environment, as well as considering the 
impact of outdated information or imperfect information to the 
resource allocation. 
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