In this paper, a method for improving the defect classification performance in low contrast, ununiformity and featureless steel plate surfaces has been studied based on deep convolution neural network and transfer-learning neural network. The steel plate surface images have low contrast, ununiformity, and featureless, so that the contrast between defect and defect-free regions are not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. A classifier based on a deep convolution neural network is constructed to extract features automatically for effective classification of images with these characteristics. As results of the experiment, AlexNet-based transfer-learning classifier showed excellent classification performance of 99.43% with less than 160 seconds of training time. The proposed classification system showed excellent classification performance for low contrast, ununiformity, and featureless surface images.
Peer-to-Peer (P2P) network has great potential on utilizing the network while reducing the server loads. Video on Demand (VoD) has become widely used since we can watch contents we like without having to download the overall file first. The mobile users may not need high quality of video; they only need good enough quality that can be played in the limited resource of physical device and network. So does with the devices with very limited network bandwidth. These issues emerge an idea of allowing Free-Rider in the P2P VoD system, where those low performance devices will only optimize the network utilization, affecting none to the performance of main system.
In this study, self-organized neural network is used to solve the vorrespondence problem of the axial stereo image. Edge points are extracted from a pair of stereo images and then the edge points of rear image are assined to the output nodes of neural network. In the matching process, the two input nodes of neural networks are supplied with the coordi- nates of the edge point selected randomly from the front image. This input data activate optimal output node and its neighbor nodes whose coordinates are thought to be correspondence point for the present input data, and then their weights are allowed to updated. After several iterations of updating, the weights whose coordinates represent rear edge point are converged to the coordinates of the correspondence points in the front image. Because of the feature map properties of self-organized neural network, noise-free and smoothed depth data can be achieved.
본 논문에서는 저잡음 특성을 지닌 광대역 비간섭성 광원 (BLS: Broadband Light Source)을 제안하고 이를 방송 및 통신의 통합 서비스를 제공하는 파장 분할 다중방식 수동형 광 가입자망 (WDM-PON: Wavelength Division Multiplexing-Passive Optical Network)에 적용함으로써 경제적인 광가입자망의 가능성을 시험하였다. 제안된 BLS는 경제적인 WDM-PON용 광원인 파장 잠김된 패브리 페롯 레이저 다이오드 (wavelength-locked F-P LD: wavelength-locked Fabry-Perot Laser Diode)를 위한 외부 주입 광원으로 사용되어 파장 무의존성 (color-free operation, i.e., wavelength independent operation)을 지닌 고밀도 WDM-PON (DWDM-PON: Dense WDM-PON)의 구현을 가능하게 한다. 또한 오버레이 (overlay) 방식의 방송 서비스를 위한 광원으로 응용되어 영상 및 화상 중심으로 융합된 서비스를 효율적으로 수용할 수 있는 광대역 통합망의 가능성을 시험하였다.
중력측량은 지구중력장 결정, 지각의 수직운동, 지오이드면의 변화, 해수면변화, 기후변화 등 측지학적, 지구동력학적 연구의 기초이다. 국토지리정보원에서는 최근 들어 FG-5 절대중력계를 도입하여 절대중력 기준망의 구축을 위한 틀을 마련하였고 다차원 다기능 기준점인 통합기준점을 전국에 약 1,200점을 설치하여 상대중력측량을 실시함으로써 한국의 고정밀 지오이드모델의 개발에 큰 기여를 할 것으로 판단된다. 본 연구에서는 상대중력측량의 기본적인 이론 및 방법을 상세하게 설명하였고, 최신 상대중력계 Scintrex CG-5를 이용하여 총 21점에 대한 상대중력측량을 수행하였으며, 자유망조정 및 무게제한 망조정 방법을 이용하여 중력성과를 계산 및 비교 분석하였다. 결과, 두 가지 방법 모두 높은 정밀도의 중력성과 계산이 가능하지만 자유망조정이 무게제한 망조정 방법에 비해 상대적인 우위를 보여주는 것으로 나타났다.
Convolutional Neural Network(CNN)는 특징 추출과 분류의 두 단계로 나눌 수 있다. 그 중 특징 추출 단계의 커널의 크기, 채널의 수, stride 등의 hyperparameter는 CNN의 구조를 결정할 뿐만 아니라 특징을 추출하는 데에도 영향을 주기 때문에 CNN의 전체적인 성능에도 영향을 준다. 본 논문에서는 Parameter-Setting-Free Harmony Search(PSF-HS) 알고리즘을 이용하여 CNN의 특징 추출 단계에서의 hyperparameter를 최적화 하는 방법을 제안하였다. CNN의 전체 구조를 설정한 뒤 hyperparameter를 변수로 설정하였고 PSF-HS 알고리즘을 적용하여 hyperparameter를 최적화 하였다. 시뮬레이션은 MATLAB을 이용하여 진행하였고 CNN은 mnist 데이터를 이용하여 학습과 테스트를 했다. 총 500번 동안 변수를 업데이트했고 제안하는 방법을 이용하여 구한 CNN 구조 중 가장 높은 정확도를 가지는 구조는 99.28%의 정확도로 mnist 데이터를 분류하는 것을 확인할 수 있었다.
본 논문에서는 셀프리 다중안테나 환경에서 네트워크 전체 사용자의 성능을 보장하기 위한 사용자 중심의 클러스터링 기법을 고려한다. 사용자 중심 클러스터링 기법에서 각 사용자는 자신과 연결된 AP(Access Point)들 사이의 대규모 페이딩(large-scale fading) 채널 정보를 이용해 페이딩 계수가 가장 큰 AP와 페이딩 계수의 상대적 크기가 임계값 이상의 값을 갖는 AP들로 클러스터를 구성한다. 사용자 중심으로 구성된 클러스터를 바탕으로 AP들은 분산적인 기법으로 빔형성과 전력할당을 설계하고 이를 이용해 사용자들의 데이터를 협력 전송한다. 시뮬레이션을 통해 주파수 효율 관점에서 사용자 중심 클러스터링의 성능을 검증하고 주어진 환경에서 최적의 성능을 나타내는 임계값을 찾는다.
Kim, Dae-Hoon;Kim, Do-Hyeon;Lee, Dong-Hoon;Kim, Yoon
한국컴퓨터정보학회논문지
/
제27권4호
/
pp.19-26
/
2022
최근 지능형 교통 체계의 발전에 따라 자동차 번호판 인식 시스템이 다양한 분야에서 활용되고 있다. 주행 중인 자동차의 번호판을 인식하기 위해서는 실시간성이 보장되어야 하며, 영상이 왜곡되어 뚜렷하지 않거나 번호판의 크기가 작은 저해상도 영상에서도 높은 인식률이 유지되어야 한다. 본 논문에서는 자유 앵커 방식 기반의 객체 탐지 알고리즘과 합성곱 신경망(CNN) 기반의 문자 인식 알고리즘을 이용하여 처리 속도를 향상한 실시간 자동차 번호판 인식 시스템을 제안한다. 더불어 공간 변형 네트워크를 이용하여 저해상도 및 왜곡된 영상에서의 인식률을 높였다. 제안하는 시스템의 인식률은 93.769%, 이미지 당 처리 속도는 약 0.006초로 기존 자동차 번호판 인식 시스템보다 빠른 속도로 자동차 번호판을 인식하며, 다양한 환경 및 품질의 영상에 대해 높은 인식률을 유지하는 것을 확인할 수 있다.
본 논문에서는 셀프리 다중안테나 네트워크에서 하위 성능 사용자의 주파수 효율을 증대시키기 위한 전력 재할당 기법을 고려한다. AP(Access Point)는 사용자의 대규모 페이딩(large-scale fading) 채널 정보를 이용해 채널 세기에 비례하여 전력을 할당하여 전체 네트워크의 전력효율을 극대화한다. 다음으로 AP는 하위 성능 사용자의 주파수 효율을 증가시키기 위해 할당전력 중 임계비율 이상의 전력을 할당받은 사용자의 전력을 임계비율과 같아지도록 줄이고, 회수한 전력을 채널이 가장 나쁜 사용자에게 추가로 할당한다. 시뮬레이션을 통해 전력 재할당 기법을 통해 증가시킬 수 있는 하위 성능 사용자의 주파수 효율을 정량적으로 검증한다.
In this paper we discuss an algorithm for a real time transmission of moving color images on the TCP/IP network using wavelet transform and neural network. The image frames received from the camera are two-level wavelet-transformed in the server, and are transmitted to the client on the network. Then, the client performs the inverse wavelet-fransform using only the received pieces of each image frame within the prescribed time limit to display the moving images. When the TCP/IP network is busy, only a fraction of each image frame will be delivered. When the line is free, the whole frame of each image will be transferred to the client. The receiver warns the sender of the condition of traffic congestion in the network by sending a special short frame for this specific purpose. The sender can respond to this condition of warning by simply reducing the data rate which is adjusted by a back-propagation neural network. In this way we can send a stream of moving images adaptively adjusting to the network traffic condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.