• Title/Summary/Keyword: Network Fault-tolerant

Search Result 162, Processing Time 0.025 seconds

Connectivity Evaluation for a Class of Fault-tolerant Shuffle Exchange Networks (고장감내형 셔플위치망의 연결성 평가)

  • 윤상흠;고재상
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1807-1814
    • /
    • 1999
  • This paper considers connectivity-related reliability measures for a class of fault-tolerant shuffle exchange networks to characterize the degrading features over time in the presence of faulty switching elements. The mean number of connected input/output pairs, the mean number of survivable input are considered as connectivity measures. The measures for the unique-path shuffle exchange network(SEN) and its two fault-tolerant variants, extra-stage SEN(SEN+) and INDRA network are derived analytically, and then are compared with numerical experiments.

  • PDF

Evaluation and Comparative Analysis of Scalability and Fault Tolerance for Practical Byzantine Fault Tolerant based Blockchain (프랙티컬 비잔틴 장애 허용 기반 블록체인의 확장성과 내결함성 평가 및 비교분석)

  • Lee, Eun-Young;Kim, Nam-Ryeong;Han, Chae-Rim;Lee, Il-Gu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.271-277
    • /
    • 2022
  • PBFT (Practical Byzantine Fault Tolerant) is a consensus algorithm that can achieve consensus by resolving unintentional and intentional faults in a distributed network environment and can guarantee high performance and absolute finality. However, as the size of the network increases, the network load also increases due to message broadcasting that repeatedly occurs during the consensus process. Due to the characteristics of the PBFT algorithm, it is suitable for small/private blockchain, but there is a limit to its application to large/public blockchain. Because PBFT affects the performance of blockchain networks, the industry should test whether PBFT is suitable for products and services, and academia needs a unified evaluation metric and technology for PBFT performance improvement research. In this paper, quantitative evaluation metrics and evaluation frameworks that can evaluate PBFT family consensus algorithms are studied. In addition, the throughput, latency, and fault tolerance of PBFT are evaluated using the proposed PBFT evaluation framework.

FTOG-based Recovery Services Through Replicated Objects (중복 객체를 통한 FTOG 모델 기반의 회복서비스)

  • Kang, Myung-Seok;Jung, Jae-Yun;Kim, Hag-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12B
    • /
    • pp.1044-1048
    • /
    • 2006
  • This paper proposes a FTOG(Fault-Tolerant Object Group)-based recovery services through replicated objects. In the distributed system, the fault of the object component may cause an entire system failure, evidently raising the service breakdowns. Therefore, this paper proposes recovery services with the replicated objects in case of fault occurrences. Moreover, applying the FTOG model to a virtual home network simulation, we verify the consistency maintenance and the service reliability of the proposed model.

Implementation of IEEE 1451 based Dual CAN Module for Fault Tolerance of In-Vehicle Networking System (차량 네트워크 시스템의 결함 허용을 위한 IEEE 1451 기반 중복 CAN 모듈의 구현)

  • Lee, Jong-Gap;Kim, Man-Ho;Park, Jee-Hun;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.753-759
    • /
    • 2009
  • As many systems depend on electronics in an intelligent vehicle, concern for fault tolerance is growing rapidly. For example, a car with its braking controlled by electronics and no mechanical linkage from brake pedal to calipers of front tires(brake-by-wire system) should be fault tolerant because a failure can come without any warning and its effect is devastating. In general, fault tolerance is usually designed by placing redundant components that duplicate the functions of the original module. In this way a fault can be isolated, and safe operation is guaranteed by replacing the faulty module with its redundant and normal module within a predefined interval. In order to make in-vehicle network fault tolerant, this paper presents the concept and design methodology of an IEEE 1451 based dual CAN module. In addition, feasibility of the dual CAN network was evaluated by implementing the dual CAN module.

A Fault Tolerant Data Management Scheme for Healthcare Internet of Things in Fog Computing

  • Saeed, Waqar;Ahmad, Zulfiqar;Jehangiri, Ali Imran;Mohamed, Nader;Umar, Arif Iqbal;Ahmad, Jamil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.35-57
    • /
    • 2021
  • Fog computing aims to provide the solution of bandwidth, network latency and energy consumption problems of cloud computing. Likewise, management of data generated by healthcare IoT devices is one of the significant applications of fog computing. Huge amount of data is being generated by healthcare IoT devices and such types of data is required to be managed efficiently, with low latency, without failure, and with minimum energy consumption and low cost. Failures of task or node can cause more latency, maximum energy consumption and high cost. Thus, a failure free, cost efficient, and energy aware management and scheduling scheme for data generated by healthcare IoT devices not only improves the performance of the system but also saves the precious lives of patients because of due to minimum latency and provision of fault tolerance. Therefore, to address all such challenges with regard to data management and fault tolerance, we have presented a Fault Tolerant Data management (FTDM) scheme for healthcare IoT in fog computing. In FTDM, the data generated by healthcare IoT devices is efficiently organized and managed through well-defined components and steps. A two way fault-tolerant mechanism i.e., task-based fault-tolerance and node-based fault-tolerance, is provided in FTDM through which failure of tasks and nodes are managed. The paper considers energy consumption, execution cost, network usage, latency, and execution time as performance evaluation parameters. The simulation results show significantly improvements which are performed using iFogSim. Further, the simulation results show that the proposed FTDM strategy reduces energy consumption 3.97%, execution cost 5.09%, network usage 25.88%, latency 44.15% and execution time 48.89% as compared with existing Greedy Knapsack Scheduling (GKS) strategy. Moreover, it is worthwhile to mention that sometimes the patients are required to be treated remotely due to non-availability of facilities or due to some infectious diseases such as COVID-19. Thus, in such circumstances, the proposed strategy is significantly efficient.

Implementation of PLC Fault Tolerance Communication System in Control & Communication Link (Control & Communication 상에서의 PLC 고장허용 통신 시스템 구현)

  • Lim, Wan-Taek;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2298-2300
    • /
    • 2002
  • In this paper, we introduced a fault tolerant control system with the aim of achieving higher degree of reliability for a PLC control system in the field network. The system reliability was evaluated by MTBF(Mean Time Between Failure). The design of the fault tolerant system through CC-Link of Mitsubisi's MELSEC network was presented. In addition, the PLC data is transmitted from the field network's PC to the host PC by TCP/IP Window socket.

  • PDF

A Study on the Fault Tolerant Control System for Aircraft Sensor and Actuator Failures via Neural Networks (신경회로망을 이용한 항공기 센서 및 구동장치 고장보완 제어시스템 설계에 관한 연구)

  • Song, Yong Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.171-179
    • /
    • 2003
  • In this paper a neural network-based fault tolerant control system for aircraft sensor and actuator failures is considered. By exploiting flight dynamic relations a set of neural networks is constructed to detect sensor failure and give alternative signal for the faulty sensor. For actuator failures another set of neural networks is designed to perform fault detection, identification, and accomodation which returns the aircraft to a new stable trim. Integrated system is simulated to show the performance of the system with sensor and control surface failures.

  • PDF

Multidimensional Ring-Delta Network: A High-Performance Fault-Tolerant Switching Networks (다차원 링-델타 망: 고성능 고장감내 스위칭 망)

  • Park, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, a high-performance fault-tolerant switching network using a deflection self-routing was proposed. From an abstract algebraic analysis of the topological properties of the Delta network, which is a baseline switching network, we derive the Multidimensional Ring-Delta network: a multipath switching network using a deflection self-routing algorithm. All of the links including already existing links of the Delta network are used to provide the alternate paths detouring faulty/congested links. We ran a simulation analysis under the traffic loads having the non-uniform address distributions that are usual in Internet. The throughput of $1024\;{\times}\;1024$ switching network proposed is better than that of the 2D ring-Banyan network by 13.3 %, when the input traffic load is 1.0 and the hot ratio is 0.9. The reliability of $64\;{\times}\;64$ switching network proposed is better than that of the 2D ring-Banyan network by 46.6%.

Fault Tolerant Clock Management Scheme in Sensor Networks (센서 네트워크에서 고장 허용 시각 관리 기법)

  • Hwang So-Young;Baek Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.868-877
    • /
    • 2006
  • Sensor network applications need synchronized time to the highest degree such as object tracking, consistent state updates, duplicate detection, and temporal order delivery. In addition, reliability issues and fault tolerance in sophisticated sensor networks have become a critical area of research today. In this paper, we proposed a fault tolerant clock management scheme in sensor networks considering two cases of fault model such as network faults and clock faults. The proposed scheme restricts the propagation of synchronization error when there are clock faults of nodes such as rapid fluctuation, severe changes in drift rate, and so on. In addition, it handles topology changes. Simulation results show that the proposed method has about $1.5{\sim}2.0$ times better performance than TPSN in the presence of faults.

Adaptive Fault-tolerant Multistage Interconnection Network (적응적 결함-허용 다단계 상호연결망)

  • 김금호;김영만;배은호;윤성대
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.199-202
    • /
    • 2001
  • In this paper, we proposed and analyzed a new class of irregular fault-tolerant multistage interconnection network named as Extended-QT(Quad Tree) network. E-QT network is extended QT network. A unique path MIN usually is low hardware complexity and control algorithm. So we proposes a class of multipath MIN which are obtained by adding self-loop auxiliary links at the a1l stages in QT(Quad Tree) networks so that they can provide more paths between each source-destination pair. The routing of proposed structure is adaptived and is based by a routing tag. Starting with the routing tag for the minimum path between a given source-destination pair, routing algorithm uses a set of rules to select switches and modify routing tag. Trying the self-loop auxiliary link when both of the output links are unavailable. If the trying is failure, the packet discard. In simulation, an index of performance called reliability and cost are introduced to compare different kinds of MINs. As a result, the prouosed MINs have better capacity than 07 networks.

  • PDF