• Title/Summary/Keyword: Network Density

Search Result 1,059, Processing Time 0.024 seconds

Optimal User Density and Power Allocation for Device-to-Device Communication Underlaying Cellular Networks

  • Yang, Yang;Liu, Ziyang;Min, Boao;Peng, Tao;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.483-503
    • /
    • 2015
  • This paper analyzes the optimal user density and power allocation for Device-to-Device (D2D) communication underlaying cellular networks on multiple bands with the target of maximizing the D2D transmission capacity. The entire network is modeled by Poisson point process (PPP) which based on stochastic geometry. Then in order to ensure the outage probabilities of both cellular and D2D communication, a sum capacity optimization problem for D2D system on multiple bands is proposed. Using convex optimization, the optimal D2D density is obtained in closed-form when the D2D transmission power is determined. Next the optimal D2D transmission power is obtained in closed-form when the D2D density is fixed. Based on the former two conclusions, an iterative algorithm for the optimal D2D density and power allocation on multiple bands is proposed. Finally, the simulation results not only demonstrate the D2D performance, density and power on each band are constrained by cellular communication as well as the interference of the entire system, but also verifies the superiority of the proposed algorithm over sorting-based and removal algorithms.

Energy Efficient In-network Density Query Processing in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 인-네트워크 밀도 질의 처리)

  • Lee, Ji-Hee;Seong, Dong-Ook;Kang, Gwang-Goo;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1234-1238
    • /
    • 2010
  • In recent, there have been done many studies on applications that monitor the information of mobile objects using Wireless Sensor Networks (WSN). A density query that finds out an area spread by density that a target object requires in the whole sensing field is a field of object monitoring applications. In this paper, we propose a novel homogeneous network-based in-network density query processing scheme that significantly reduces query processing costs and assures high accuracy. This scheme is based on the possibility-based expected region selection technique and the result compensation technique in order to enhance the accuracy of the density query and to minimize its energy consumption. To show the superiority of our proposed scheme, we compare it with the existing density query processing scheme. As a result, our proposed scheme reduces about 92% energy consumption for query processing, while its network lifetime increases compared to the existing scheme. In addition, the proposed scheme guarantees higher accuracy than the existing scheme in terms of the query result.

Development of a Fatigue Damage Model of Wideband Process using an Artificial Neural Network (인공 신경망을 이용한 광대역 과정의 피로 손상 모델 개발)

  • Kim, Hosoung;Ahn, In-Gyu;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.88-95
    • /
    • 2015
  • For the frequency-domain spectral fatigue analysis, the probability density function of stress range needs to be estimated based on the stress spectrum only, which is a frequency domain representation of the response. The probability distribution of the stress range of the narrow-band spectrum is known to follow the Rayleigh distribution, however the PDF of wide-band spectrum is difficult to define with clarity due to the complicated fluctuation pattern of spectrum. In this paper, efforts have been made to figure out the links between the probability density function of stress range to the structural response of wide-band Gaussian random process. An artificial neural network scheme, known as one of the most powerful system identification methods, was used to identify the multivariate functional relationship between the idealized wide-band spectrums and resulting probability density functions. To achieve this, the spectrums were idealized as a superposition of two triangles with arbitrary location, height and width, targeting to comprise wide-band spectrum, and the probability density functions were represented by the linear combination of equally spaced Gaussian basis functions. To train the network under supervision, varieties of different wide-band spectrums were assumed and the converged probability density function of the stress range was derived using the rainflow counting method and all these data sets were fed into the three layer perceptron model. This nonlinear least square problem was solved using Levenberg-Marquardt algorithm with regularization term included. It was proven that the network trained using the given data set could reproduce the probability density function of arbitrary wide-band spectrum of two triangles with great success.

The Interaction Effects between Synchronous CMC Technology and Task Networks : A Perspective of Media Synchronicity Theory

  • Yang, Hee-Dong;Kim, Min-Soo;Park, Chul-Woo
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.479-491
    • /
    • 2008
  • A "task network" is a type of social network that consists of experts who exchange professional help and advice regarding executing tasks. In this study, we investigate the task network used within the IS department of a national bank in Korea. We identify how this network moderates the influence of computer-mediated communication (CMC) technology on an individual s task performance. Size, density, and centrality were measured as the characteristics of a personal task networks. Size equates to the total number of colleagues who work with a specific member for a certain project. Density is the ratio of the number of actual relationships to the total number of available relationships. Centrality defines whether an individual s position is in the exact center of whole network, and is measured by betweenness centrality, meaning the position one member holds between others in a network. Our findings conclude that the conditions - the larger the size of the task network, the smaller its density and the higher its level of centrality - lead to more benefits of using CMC media. Further, this positive effect of CMC is more noticeable when it provides synchronicity.

  • PDF

Product Network Analysis to Analyze the Purchase Behavior of Customers (제품 네트워크 분석을 이용한 고객의 구매제품 특성 비교 연구)

  • Choi, II-Young;Kim, Jae-Kyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.57-72
    • /
    • 2009
  • As development of information technologies, customer retention has been an important issue in the competing environment. A lot of researches focus on prediction of the churning customers and seeking their characteristics. However, relationships among customers or products have not been considered in existing researches. In this study, product networks are proposed and analyzed to investigate the differences of network characteristics of products purchased by potential churning customers and those of loyal customers. The product networks are constructed from real product purchase data collected from a Korean department store. We investigated the characteristic differences, such as the degree centrality, degree centralization, and density, of two product networks constructed by potential churning customers and the loyal customers. The results indicate that degree centrality, density and degree centralization of the product network of the loyal customers are higher than those of the potential churning customers. And the promotional products of the department store are resulted to be effective in attracting the loyal customers.

Social Network Analysis using Common Neighborhood Subgraph Density (공통 이웃 그래프 밀도를 사용한 소셜 네트워크 분석)

  • Kang, Yoon-Seop;Choi, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.432-436
    • /
    • 2010
  • Finding communities from network data including social networks can be done by clustering the nodes of the network as densely interconnected groups, where keeping interconnection between groups sparse. To exploit a clustering algorithm for community detection task, we need a well-defined similarity measure between network nodes. In this paper, we propose a new similarity measure named "Common Neighborhood Sub-graph density" and combine the similarity with affinity propagation, which is a recently devised clustering algorithm.

Estimation of Crowd Density in Public Areas Based on Neural Network

  • Kim, Gyujin;An, Taeki;Kim, Moonhyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2170-2190
    • /
    • 2012
  • There are nowadays strong demands for intelligent surveillance systems, which can infer or understand more complex behavior. The application of crowd density estimation methods could lead to a better understanding of crowd behavior, improved design of the built environment, and increased pedestrian safety. In this paper, we propose a new crowd density estimation method, which aims at estimating not only a moving crowd, but also a stationary crowd, using images captured from surveillance cameras situated in various public locations. The crowd density of the moving people is measured, based on the moving area during a specified time period. The moving area is defined as the area where the magnitude of the accumulated optical flow exceeds a predefined threshold. In contrast, the stationary crowd density is estimated from the coarseness of textures, under the assumption that each person can be regarded as a textural unit. A multilayer neural network is designed, to classify crowd density levels into 5 classes. Finally, the proposed method is experimented with PETS 2009 and the platform of Gangnam subway station image sequences.

Nonuniformity of Conditioning Density According to CMP Conditioning System Design Variables Using Artificial Neural Network (인공신경망을 활용한 CMP 컨디셔닝 시스템 설계 변수에 따른 컨디셔닝 밀도의 불균일도 분석)

  • Park, Byeonghun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.152-161
    • /
    • 2022
  • Chemical mechanical planarization (CMP) is a technology that planarizes the surfaces of semiconductor devices using chemical reaction and mechanical material removal, and it is an essential process in manufacturing highly integrated semiconductors. In the CMP process, a conditioning process using a diamond conditioner is applied to remove by-products generated during processing and ensure the surface roughness of the CMP pad. In previous studies, prediction of pad wear by CMP conditioning has depended on numerical analysis studies based on mathematical simulation. In this study, using an artificial neural network, the ratio of conditioner coverage to the distance between centers in the conditioning system is input, and the average conditioning density, standard deviation, nonuniformity (NU), and conditioning density distribution are trained as targets. The result of training seems to predict the target data well, although the average conditioning density, standard deviation, and NU in the contact area of wafer and pad and all areas of the pad have some errors. In addition, in the case of NU, the prediction calculated from the training results of the average conditioning density and standard deviation can reduce the error of training compared with the results predicted through training. The results of training on the conditioning density profile generally follow the target data well, confirming that the shape of the conditioning density profile can be predicted.

DNAPL migration in fracture networks and its remediation

  • 이항복;지성훈;여인욱;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.543-547
    • /
    • 2003
  • We applied the modified invasion percolation (MIP) model to the migration of DNAPL within a two-dimensional random fracture network. The MIP model was verified against laboratory experiments, which was conducted using a two-dimensional random fracture network model. The results showed that the MIP needs modification. To remove TCE trapped in a random fracture network, the density-surfactant-motivated removal method was applied and found very effective to remove TCE from dead-end fractures.

  • PDF

Dynamic Density-based Inhibited Message Diffusion For Reducing Overhead In Delay Tolerant Network (DTN에서 오버헤드 감소를 위한 동적 밀도 기반 메시지 확산 억제 기법)

  • Dho, Yoon-hyung;Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.120-122
    • /
    • 2015
  • In this paper, we proposed an algorithm of the unnecessary copied message inhibition using dynamic density what is called DDIM(Dynamic Density-based Inhibited Message diffusion) in DTNs(Delay Tolerant Networks). Existing DTN routing algorithms as Epidemic and Spray and Wait have some problems that occur large overhead in dense network due to the thoughtless message diffusion. Our proposed method, the DDIM, determines adjusted number of copied message through dynamic node density that is calculated using node's radio coverage and neighbor nodes in period time to solve message diffusion problem. It decrease overhead without losing message delivery ratio and increased latency through reducing message diffusion. In this paper, we compare delivery ratio, average latency and overhead of proposed algorithm, DDIM, and existing DTN routing algorithm and prove enhanced performance through simulation results.

  • PDF