• 제목/요약/키워드: Network Clustering

검색결과 1,270건 처리시간 0.032초

A Clustering Scheme for Discovering Congested Routes on Road Networks

  • Li, He;Bok, Kyoung Soo;Lim, Jong Tae;Lee, Byoung Yup;Yoo, Jae Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1836-1842
    • /
    • 2015
  • On road networks, the clustering of moving objects is important for traffic monitoring and routes recommendation. The existing schemes find out density route by considering the number of vehicles in a road segment. Since they don’t consider the features of each road segment such as width, length, and directions in a road network, the results are not correct in some real road networks. To overcome such problems, we propose a clustering method for congested routes discovering from the trajectories of moving objects on road networks. The proposed scheme can be divided into three steps. First, it divides each road network into segments with different width, length, and directions. Second, the congested road segments are detected through analyzing the trajectories of moving objects on the road network. The saturation degree of each road segment and the average moving speed of vehicles in a road segment are computed to detect the congested road segments. Finally, we compute the final congested routes by using a clustering scheme. The experimental results showed that the proposed scheme can efficiently discover the congested routes in different directions of the roads.

송전망 축약을 위한 교육용 프로그램 개발 (An Educational Program for Reduction of Transmission Network)

  • 송형용;정윤원;원종집;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.153-154
    • /
    • 2008
  • This paper presents a window-based software package for the education and training for the reduction of power system by using locational marginal price (LMP), clustering, and similarity indices of each bus. The developed package consists of three modules: 1) the LMP module, 2) the Clustering module and 3) the Reduction module. Each module has a separated and interactive interface window. First of all, LMPs are created in the LMP module, and then the Clustering module carries out clustering based on the results of the LMP module. Finally, groups created in this Clustering module are reduced by using the similarity indices of each bus. The developed package displays a variety of tables for results of the LMPs of base network, voltages, phases and power flow of reduced network so that the user can easily understand the reduction of network. To demonstrate the performance of the developed package, it is tested for the IEEE 39-bus power system.

  • PDF

Dissolved Gas Analysis of Power Transformer Using Fuzzy Clustering and Radial Basis Function Neural Network

  • Lee, J.P.;Lee, D.J.;Kim, S.S.;Ji, P.S.;Lim, J.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.157-164
    • /
    • 2007
  • Diagnosis techniques based on the dissolved gas analysis(DGA) have been developed to detect incipient faults in power transformers. Various methods exist based on DGA such as IEC, Roger, Dornenburg, and etc. However, these methods have been applied to different problems with different standards. Furthermore, it is difficult to achieve an accurate diagnosis by DGA without experienced experts. In order to resolve these drawbacks, this paper proposes a novel diagnosis method using fuzzy clustering and a radial basis neural network(RBFNN). In the neural network, fuzzy clustering is effective for selecting the efficient training data and reducing learning process time. After fuzzy clustering, the RBF neural network is developed to analyze and diagnose the state of the transformer. The proposed method measures the possibility and degree of aging as well as the faults occurred in the transformer. To demonstrate the validity of the proposed method, various experiments are performed and their results are presented.

CACHE:상황인식 기반의 계층적 클러스터링 알고리즘에 관한 연구 (CACHE:Context-aware Clustering Hierarchy and Energy efficient for MANET)

  • 문창민;이강환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.571-573
    • /
    • 2009
  • 이동 애드혹 네트워크(MANET)는 무선네트워크에서 노드들이 제한적인 에너지를 가지고 있기 때문에 보다 효율적인 노드의 관리가 요구 된다. 이러한 MANET에서는 정적인 네트워크에 비해 토폴로지가 자주 변하므로 이동성을 고려한 에너지 효율적인 라우팅 프로토콜이 요구된다. 기존에 제안 된 CACH(Context-aware Adaptive Clustering Hierarchy)[1]는 하이브리드 라우팅 방식을 분산 클러스터링 기반으로 구성하여 네트워크 수명을 연장하고 지연시간을 감소하였다. 하지만 노드의 밀도증가를 효율적으로 알고리즘에 적용하지 못한 문제점이 있다. 이를 보완하기 위해 본 논문에서는, CACHE(Context-aware Adaptive Clustering Hierarchy and Energy efficient)를 제안한다. CACHE는 노드 밀도 변경에 대해 적응적으로 알고리즘을 적용할 수 있도록 클러스터 구성을 수정하여, CACH가 갖는 노드 밀도 문제를 개선하였다.

  • PDF

대규모 무선 센서 네트워크에서 계층 기반의 동적 불균형 클러스터링 기법 (A Layer-based Dynamic Unequal Clustering Method in Large Scale Wireless Sensor Networks)

  • 김진수
    • 한국산학기술학회논문지
    • /
    • 제13권12호
    • /
    • pp.6081-6088
    • /
    • 2012
  • 불균형 클러스터링은 클러스터의 크기를 서로 다른 크기로 나누는 방법으로 균형 클러스터링에 비해 핫스팟 문제를 어느 정도 해결할 수 있으므로 전체 네트워크의 에너지 소모량을 줄인다. 본 논문에서는 불균형 클러스터링 모델을 이용하여 계층 기반의 동적 불균형 클러스터링을 제안한다. 이는 라운드별로 최적의 클러스터 수 및 클러스터 헤드 위치를 제공함으로써 전체 네트워크에 대한 에너지 소모를 균형 있게 하고 또한 네트워크 수명을 연장시킨다. 실험을 통하여 제안된 기법이 이전 클러스터링 기법보다 네트워크 수명이 연장되었음을 보였다.

A Clustering Protocol with Mode Selection for Wireless Sensor Network

  • Kusdaryono, Aries;Lee, Kyung-Oh
    • Journal of Information Processing Systems
    • /
    • 제7권1호
    • /
    • pp.29-42
    • /
    • 2011
  • Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way, since their energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor networks. In this paper, we introduce a clustering protocol with mode selection (CPMS) for wireless sensor networks. Our scheme improves the performance of BCDCP (Base Station Controlled Dynamic Clustering Protocol) and BIDRP (Base Station Initiated Dynamic Routing Protocol) routing protocol. In CPMS, the base station constructs clusters and makes the head node with the highest residual energy send data to the base station. Furthermore, we can save the energy of head nodes by using the modes selection method. The simulation results show that CPMS achieves longer lifetime and more data message transmissions than current important clustering protocols in wireless sensor networks.

Data Clustering Using Hybrid Neural Network

  • Guan, Donghai;Gavrilov, Andrey;Yuan, Weiwei;Lee, Sung-Young;Lee, Young-Koo
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.457-458
    • /
    • 2007
  • Clustering plays an indispensable role for data analysis. Many clustering algorithms have been developed. However, most of them suffer poor performance of learning. To archive good clustering performance, we develop a hybrid neural network model. It is the combination of Multi-Layer Perceptron (MLP) and Adaptive Resonance Theory 2 (ART2). It inherits two distinct advantages of stability and plasticity from ART2. Meanwhile, by combining the merits of MLP, it improves the performance for clustering. Experiment results show that our model can be used for clustering with promising performance.

Context-based 클러스터링에 의한 Granular-based RBF NN의 설계 (The Design of Granular-based Radial Basis Function Neural Network by Context-based Clustering)

  • 박호성;오성권
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1230-1237
    • /
    • 2009
  • In this paper, we develop a design methodology of Granular-based Radial Basis Function Neural Networks(GRBFNN) by context-based clustering. In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The output space is granulated making use of the K-Means clustering while the input space is clustered with the aid of a so-called context-based fuzzy clustering. The number of information granules produced for each context is adjusted so that we satisfy a certain reconstructability criterion that helps us minimize an error between the original data and the ones resulting from their reconstruction involving prototypes of the clusters and the corresponding membership values. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the values of the context and the prototypes in the input space. The other parameters of these local functions are subject to further parametric optimization. Numeric examples involve some low dimensional synthetic data and selected data coming from the Machine Learning repository.

무선 센서 네트워크에서 에너지 효율적 클러스터 헤드 선정 기법 (Energy-Efficient Cluster Head Selection Method in Wireless Sensor Networks)

  • 남춘성;장경수;신호진;신동렬
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권2호
    • /
    • pp.25-30
    • /
    • 2010
  • 무선 센서 네트워크는 제한된 자원을 가지고 특정한 지역에 임의로 뿌려진 센서 노드가 자가 구성적으로 형성하는 네트워크를 말한다. 센서 네트워크의 확장성(scalability), 로드 밸런싱(load balancing) 그리고 네트워크 라이프타임(network lifetime)을 보장하기 위해서 네트워크를 지역적으로 관리하는 클러스터링 알고리즘이 필요하다. 이전의 클러스터링 알고리즘에서 클러스터 헤드를 선정할 때 노드의 위치 및 에너지를 알아내기 위해 추가적인 통신비용이 발생하고, 클러스터 간 불균형이 클러스터 헤드에게 과부하를 유발한다. 따라서 본 논문은 이러한 문제점들을 해결하기 위해 추가적인 통신비용과 클러스터 불균형을 고려하는 새로운 클러스터 헤드 선정 알고리즘을 제안한다. 제안된 알고리즘은 실험결과를 통해 기존의 방법보다 에너지 측면에서 효율적임을 보여준다.

Data Correlation-Based Clustering Algorithm in Wireless Sensor Networks

  • Yeo, Myung-Ho;Seo, Dong-Min;Yoo, Jae-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권3호
    • /
    • pp.331-343
    • /
    • 2009
  • Many types of sensor data exhibit strong correlation in both space and time. Both temporal and spatial suppressions provide opportunities for reducing the energy cost of sensor data collection. Unfortunately, existing clustering algorithms are difficult to utilize the spatial or temporal opportunities, because they just organize clusters based on the distribution of sensor nodes or the network topology but not on the correlation of sensor data. In this paper, we propose a novel clustering algorithm based on the correlation of sensor data. We modify the advertisement sub-phase and TDMA schedule scheme to organize clusters by adjacent sensor nodes which have similar readings. Also, we propose a spatio-temporal suppression scheme for our clustering algorithm. In order to show the superiority of our clustering algorithm, we compare it with the existing suppression algorithms in terms of the lifetime of the sensor network and the size of data which have been collected in the base station. As a result, our experimental results show that the size of data is reduced and the whole network lifetime is prolonged.