References
- H. Tsukioka, K. Sugawara, E. Mori and H. Yamaguchi, 'New apparatus for detecting transformer faults', IEEE Trans. Electrical Insulation, vol. EI-21, no. 2, pp. 221-229, 1986 https://doi.org/10.1109/TEI.1986.348948
- M. Duval, 'Dissolved gas analysis: It can save your transformer', IEEE Electrical Insulation Magazine, vol. 5, no. 6, pp. 22-26, 1989
- H. Yoshida, Y. Ishioka, T. Suzuki, T. Yanari and T. Teranishi, 'Degradation of insulating materials of transformers', IEEE Trans. Electrical Insulation, vol. EI-22, No. 6, pp. 795-800, 1987 https://doi.org/10.1109/TEI.1987.298942
- Y. Kamata, 'Diagnostic methods for power transformer insulation', IEEE Trans. Electrical Insulation, vol. EI-21, no. 6, pp. 1045-1048, 1986 https://doi.org/10.1109/TEI.1986.349022
- Fu Yang, Jin Xi; Lan Zhida, 'A neural network approach to power transformer fault diagnosis', ICEMS 2003, Electrical Machines and Systems, vol. 1, pp. 351–354, Nov. 2003
- Pyeong Shik Ji, Jae Yoon Lim; Jong Pil Lee, 'Aging characteristics of power transformer oil and development of its analysis using KSOM', TENCON 99, Proceedings of the IEEE Region, vol. 2, pp. 1026- 029, Sept. 1999
- Magn_Hui Wang, Hong-Chan Chang, 'Novel clustering method for coherency identification using an artificial neural network', IEEE Trans., Power Systems, vol. 9, pp. 2056-2062, Nov. 1994 https://doi.org/10.1109/59.331469
- J.L.Naredo, P. Moreno, C.R. Fuerte, 'A comparative study of neural network efficiency in power transformer diagnosis using dissolved gas analysis', IEEE Trans. Power Delivery, vol. 16, pp. 643 - 647, Oct. 2001 https://doi.org/10.1109/61.956751
- V. Miranda, A.R.G. Castro, 'Improving the IEC table for transformer failure diagnosis with knowledge extraction from neural networks', IEEE Trans. Power Delivery, vol. 20, pp. 2509-2516, Oct. 2005 https://doi.org/10.1109/TPWRD.2005.855423
- Yann-Chang Huang, 'A new data mining approach to dissolved gas analysis of oil-insulated power apparatus', IEEE Trans. Power Delivery, vol. 18, pp. 1257-1261, Oct. 2003 https://doi.org/10.1109/TPWRD.2003.817736
- Hong -Tzer Yang; Chiung-Chou Liao, 'Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers', IEEE Trans. Power Delivery, vol. 14, pp. 1342-1350, Oct. 1999 https://doi.org/10.1109/61.796227
- Mehmet K. Muezzinoglu, Jacek M. Zurada, 'RBFbased neurodynamic nearest neighbor classification in real pattern space', ARTICLE Pattern Recognition, In Press, Corrected Proof, Available online December 20, 2005
- Jamuna Kanta Sing, Dipak Kumar Basu, Mita Nasipuri, Mahantapas Kundu, 'Face recognition using point symmetry distance-based RBF network,' ARTICLE Applied Soft Computing, In Press, Corrected Proof, Available online April 22, 2005
- Sang Wook Choi, Dongkwon Lee, Jin Hyun Park, In- Beum Lee, 'Nonlinear regression using RBFN with linear submodels', Chemometrics and Intelligent Laboratory Systems, vol. 65, pp. 191-208, Feb. 2003 https://doi.org/10.1016/S0169-7439(02)00109-0
- J.C. Bezedec, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981
Cited by
- Integrated ANN-based proactive fault diagnostic scheme for power transformers using dissolved gas analysis vol.23, pp.3, 2016, https://doi.org/10.1109/TDEI.2016.005301
- The behavior of different transformer oils relating to the generation of fault gases after electrical flashovers vol.84, 2017, https://doi.org/10.1016/j.ijepes.2016.06.007
- Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey vol.11, pp.4, 2018, https://doi.org/10.3390/en11040913