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Dissolved Gas Analysis of Power Transformer Using Fuzzy Clustering
and Radial Basis Function Neural Network

J. P. Lee*, D. J. Lee*, S. S. Kim*, P. S. Ji** and J.Y. Lim'

Abstract — Diagnosis techniques based on the dissolved gas analysis (DGA) have been developed to
detect incipient faults in power transformers. Various methods exist based on DGA such as IEC, Roger,
Dornenburg, and etc. However, these methods have been applied to different problems with different
standards. Furthermore, it is difficult to achieve an accurate diagnosis by DGA without experienced
experts. In order to resolve these drawbacks, this paper proposes a novel diagnosis method using fuzzy
clustering and a radial basis neural network (RBFNN). In the neural network, fuzzy clustering is .
effective for selecting the efficient training data and reducing learning process time. After fuzzy
clustering, the RBF neural network is developed to analyze and diagnose the state of the transformer.
The proposed method measures the possibility and degree of aging as well as the faults occurred in the
transformer. To demonstrate the validity of the proposed method, various experiments are performed

and their results are presented.
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1. Introduction

In extended power systems, substation facilities have
become both too complex and too large. Customers require
the high quality offered by an electrical power system.
However, some facilities have become old and often break
down unexpectedly. Such unexpected failure may cause a
break in the power system and result in loss of profits.
Therefore, it is important to prevent abrupt faults by
monitoring the condition of power systems.

Among the various power facilities, power transformers
play an important role in transmission and distribution
systems. At present, it has been proven that the dissolved
gas analysis (DGA) is the most effective and convenient
method to diagnose the transformers [1-4]. Under normal
conditions, the insulating oil and the organic insulating
material in oil-filled equipment generate a small amount of

gas caused by the gradual degradation and decomposition [5].

The DGA approach identifies faults by considering the
ratios of specific gas concentration. There are various
methods based on DGA such as Dornenburg ratios, Roger
ratios, IEC ratios, and etc. The DGA is a simple,
inexpensive, and non intrusive technique. The advantage of
DGA is that the operation and test are performed at the
same time, in addition to the fact that it is a simple and
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inexpensive diagnosis process. However, much uncertainty
exists in the data with respect to the dissolved gas. For
example, the amount of special gas in normal condition
could vary according to the characteristics of the
transformer. Furthermore, the DGA method cannot provide
accurate diagnosis without the help of experienced experts
[6].

Since the 1990’s, various artificial intelligence systems,
including fuzzy expert systems, adaptive fuzzy logic and
artificial neural networks (ANNSs) approaches, have been
presented to design the diagnosis system more effectively
[7-9]. The expert systems based on human experience have
showed many successful applications in the industrial
fields. However, there are some drawbacks to be fixed,
such as that fuzzy membership and diagnosis rule should
be constructed on the basis of the expert’s experience [10].
To overcome these problems, adaptive fuzzy logic
approaches were presented to build the fuzzy rules
automatically. However, the number of classification
attributes and the fuzzy partition were limited by the
simultaneous determination of the membership functions
and the inference rules of the fuzzy systems [11].

Fault diagnosis architectures based on neural networks
have been proposed to design a simplified structure and
obtain higher accuracy compared with the conventional
methods. Neural networks have the advantage of learning
their optimal parameters and are simple once these
parameters are found. Most neural networks have been
implemented by multilayer perceptron(MLP) with the
back-propagation learning algorithm. However, these



158 Dissolved Gas Analysis of Power Transformer Using Fuzzy Clustering and Radial Basis Function Neural Network

approaches face certain shortcomings. Especially, the
training process is slow or shows little convergence when
the training data are insufficient and incompatible to ensure
proper training [12-14].

In order to resolve these drawbacks, this paper proposes
a novel diagnosis method using fuzzy clustering and a RBF
neural network. In the neural network, fuzzy clustering is
effective for selecting the efficient training data and
reducing learning process time. After fuzzy clustering, the
RBF neural network is developed to analyze and diagnose
the state of the transformer. As compared to the
conventional neural networks implemented by MLP with
the back-propagation learning algorithm, the RBF neural
network has some advantages with respect to learning
ability and best approximation property [12-14]. To
demonstrate the validity of the proposed method, an
experiment is performed and its results are illustrated.

2. Traditional Diagnesis Using DGA

Under the abnormal condition in transformers, the
insulation oil and the organic insulation material in oil-
filled equipment generate several gases such as hydrogen
(Hz), carbon monoxide (CO), acetylene (C,H,), methane
(CH,), ethane (C,Hg), ethylene (C,;Hy), carbon dioxide
(COy), and etc. The quantity of the dissolved gas depends
fundamentally on the types of faults occurring within
‘power transformers. By considering these characteristics,
DGA methods make it possible to detect the abnormality of
the transformers.

Table 1 shows decision criteria according to quantity of
each dissolved gas in transformers, which means the
standard considered in KEPCO (Korea Electric Power
Corporation) [14]. More specifically, this method
determines incipient faults in transformers according to the
amount of gasses acquired from DGA. Here, the incipient
faults include normal, alarm, fault, and danger. Also, this
method makes it possible to identify the causes of faults
represented as partial discharge, insulator degradation, arc
discharge, low overheat and high overheat according to the
concentration of special gasses.

This diagnosis technique based on these categories has
certain limitations. For example, in case of exceeding 400
(ppm) for the concentration of hydrogen, this method
determines the fault as an alarm condition and identifies
the cause of the fault as partial discharges. However, the
transformer is assumed to be operating normally in case of
399 (ppm). Even though the difference between the two
data is only 1 (ppm), the interpretations are completely
different. This indicates a very crisp interpretation with
respect to the boundaries.

On the other hand, a specific gas is generated and

accumulated in the oil as time goes on in spite of the
normal condition. Therefore, the potential possibility and
the degree of aging could be different even to transformers
that are in normal condition. In fact, the amount of these
gases indicates the potential for seeking a method for
finding a faulted condition. This fault detection should be
made periodically by means of DGA to maintain reliable
operation of the transformers. Therefore, the variation of
the existence and the concentration of the gasses with time
must be taken into account for an accurate identification of
the fault evolution and the aging reasons.

Table 1. Decision categories in KEPCO

Normal[ppm]| Care [ppm] [ Fault [ppm] |{Danger [ppm]

Division | Below |Above|Below A;:;/e B2e(l)(z)w A;f; € B2e(l)%w Above
200kV|345kV[200k V] w x| w |y 345 kV]
H, Below 400 | Above 400 | Above 800 | Above 1,200

Below [Below|Above|Above|Abovel Above [Above] Above

€O 400 | 300 | 400 | 300 [ 700 | 600 |1,000| 800
CoH, Below Below|AbovelAbove|Abovel Above [Above] Above
25 20 25 20 80 60 150 | 120
CH, Below 250 | Above 250 | Above 750 | Above 1,000
C,Hs | Below 250 | Above 250 | Above 750 | Above 1,000
C,H, Below 300 | Above 300 | Above 750 | Above 1,000

CO, | Below 4,000 | Above 4,000| Above 7,000 -

TCG | Below 1,000 [ Above 1,000] Above 2,500 | Above 4,000

Increasin 200 200 200 300
g rate | Below/month |Above/month| Above/month| Above/month
DGA 1 per year 1 per 3 1 per month | immediately

months

period

3. Proposed Diagnosis System using FCM and
RBF Neural Network

3.1 Overview

Equations should be placed at the center of the line and
provided consecutively with equation numbers in
parentheses flushed to the right margin, as in (1). The
proposed diagnosis system is illustrated in Fig. 1. It is
shown that the system contains four modules, which are
normalization, clustering, model formation by RBF, and
diagnosis parts.

To make reasonable clustering data, normalization needs
to be considered. In this research, input data is normalized
by a fuzzy membership function named a sigmoid function.
This fuzzy function creates input data with nonlinear scale
value ranged form O to 1. The normalized value is given by
Eq. (1). Here, a and ¢ are the slope and the center of the
function, respectively. As seen in Eq. (1), we should set the
two parameters (g, ¢) in advance. This normalization
scheme can be expected to perform well if prior knowledge
about data distribution among each decision criteria is
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available. These parameters are determined through the
analysis of distribution and extensive experimentation.

1

f(x)= (1)
I+ exp(— a(x - c))
DGA Training | _[Clusterin RBF
Data Data (FeM) T b?f;ralk
etwor
v i
Normalization
Test Model N :
by fuzzy He-| Diagnosis
membership Data formation|[”] o"?

Fig. 1. The diagnosis process for the proposed method

As the next process, fuzzy clustering is implemented to
select the efficient training data and to reduce the learning
process time. After fuzzy clustering, the RBF neural
network is developed to analyze and diagnose the state of
the transformer. Finally, the diagnosis is determined by
selecting a class with the maximum value among the
output layer in the RBF network.

3.2 Data selection by FCM clustering

FCM (Fuzzy c-means) is a data clustering technique
whereby each data point belongs to a cluster to some
degree that is specified by a membership grade. This
technique was originally introduced by Jim Bezdek [15] as
an improvement on earlier clustering methods. It provides
a method that shows how to group data points that populate
some multidimensional space into a specific member of
different clusters. FCM partitions a collection of #
vectors with ¢-dimension into ¢ fuzzy groups, and finds a
cluster center in each group such that a cost function of
dissimilarity measure is minimized. The FCM algorithm
can be summarized as follows.

[Step 1] Select the number of clusters ¢ (2<c¢<n) and
exponential weight m(1 < m < ).

[Step 2] Chose the initial partition matrix U'® and a
termination criterion ¢ and set the iteration
index ptoO.

[Step 3] Calculate the fuzzy cluster centers ¢'” by

using U'” and dataset x, as follows

eo=d )

[Step 4] Calculate the new partition matrix [/ **)

! 3)

d

2/ m=1)
b
k=1 dy;

Uy

where d, means the Euclidean distance between jth

center ¢ and kth data as follows

g 172
dy =d(x,.c,) {Z(xk,- 7 } )
i=1
[Step 5] Compute the cost function as follows

T Cpre) =D, = iiu,j'"df ®)

i=] i=l j=l

Stop if either it is below a certain tolerance value or its
improvement over previous iteration is below a certain
threshold. Otherwise, compute the new cluster centers and
fuzzy partition matrix by going back to [Step 3].

3.3 Model construction by RBF neural network

The proposed diagnosis system is implemented by the
RBF neural network. The architecture of the RBF neural
network is shown in Fig. 2. It is a feed forward multilayer
perceptron composed of three layers such as input, hidden
and output layer [13, 14].

X it
X, Yz
Xig Vi
X Qutput
1
fayer Vi

Hidden
layer

Fig. 2. Architecture of RBF neural network

Let’s consider that the input layer has ¢ number of
neurons for a ¢ -dimensional input vector. The hidden

layer contains several radial basis functions (RBFs)
characterized by its center and width. The jth hidden layer
unit is usually generated by Gaussian function as follows.
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d(x,,c;)
?;(x;) = CXP[— %} ©)

172
q

d(xiSCj)z :[Z| Xk = Cp |2j @
=

where, x; is the ith input vector and (C,- , 0'/.) are the center

and width of the jth hidden layer unit, respectively.
The kth output unit of the RBF neural network for the
input vector x, can be defined as follows.

h
Vi = Z[(/)j(xi)wk,-]s k=12t (8)
=

where, w,, is the weight between the jth hidden layer unit

and the 4th neuron of the output layer, / is total number of
hidden units and ¢ is the total number of output units of the
PRB network. The sum of square error (SSE) between
target value and output value produced by the RBF neural
network is defined as follows.

E:ii(tik _yik)z ©)

i=t k=1

The parameters of the RBF neural network such as
centers, width and weight are adjusted by gradient-based
method to minimize model error. More specifically, these
parameters are adapted from initial values to optimal ones
[12-14].

Gas (1) Gas (2) Gas (k-1)

Normalization

v v vy

Gas (k)

RBF neural
Network
Qutput I I I
for I Outputs for care conditions J

normal
state \ i l

Care determination by
> threshold selecting max value

NO|

YES

Analysis of aging
degree

Fig. 3. The diagnosis scheme

3.4 Diagnosis scheme

Fig. 3 shows the diagnosis scheme proposed in this
paper. Output nodes include normal state and various alarm
conditions.

As the first step in the determination of the state of the
transformer, we consider the output value of normal
condition. If this value is larger than the predefined
threshold, we conclude that the transformer is normal,
otherwise it is in care state. In case of normal state, we
determine the aging degree according to the output values
for normal state calculated by RBF neural network. In case
of care state, diagnosis is performed by selecting the care
condition with the maximum value among the output
values of care conditions.

4. Experimental Result and Analysis
4.1 Historical data

To evaluate the proposed method, we use the dataset
acquired by KEPCO. It includes the records for 345kV and
154kV transformers operated in two different areas during
1992-1997. These patterns are acquired from transformers
in two regions in Korea. There are 963 DGA patterns
acquired from 177 transformers in 64 substations located in
the same region and 471 patterns acquired from 98
transformers in 38 substations in another region. Each
pattern consists of H,, O, N, CO», C;Hy, C,Hg, C,H,, CHy,
CO, and T.C.G. Among these gases, we chose 963 patterns
for the training purpose, while the rest of the data were
used for testing.

Fig. 4 shows the cluster centers calculated by FCM.
Here, we consider the 7 specific gases such as H,, CO,
C,H,, CH,, C,Hg, C-Hy, and CO,, which are described
from number | to 7 in this Fig. From this Fig, we see that
each condition has the characteristics according to the
amount of specific gas. For example, care condition for
insulator degradation has more CO gas than the other
conditions. Otherwise, the amount of CO gas is less than
0.7 under normal conditions.

By using the centers calculated by FCM, the RBF neural
network is learned or trained by the gradient-based method
to minimize the error function. Here the number of inputs
equals the kinds of specific gases considered in this
architecture. Also, the number of outputs equals the kinds
of care conditions plus the normal condition. Care
conditions include the six types such as insulator
degradation, CO2 excess, arc discharge, low overheat, and
high overheat. Therefore the numbers of input and output
are 7 and 6, respectively. Also, the number of hidden
neurons is 15 and the learning rate equals 0.008. These
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values are a result of extensive experimentation through
which we have concluded that these numeric values
produce a good performance of the network. Fig. 5 shows
the RMSE (root mean square error) during the 1000
iteration epochs.
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Fig. 4. Cluster centers calculated by FCM
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Fig. 5. RMSE during the training process in the RBF
neural network
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4.2 Diagnosis performance

Fig. 6 presents the output.value for the normal condition
among the output units in the RBF neural network
according to the normal and care dataset determined by
experts for normal mode. The values of most of the normal

data are higher than 0.4. Otherwise, the output unit
corresponded for normal state has the value less than 0.25
for care data. From Fig. 5, we determined the threshold
equal to 0.4. If this value is larger than this threshold, we
conclude that the transformer is normal, otherwise it is in
the care state.

Table 2 shows the diagnosis results with respect to
normal and care conditions. From this table, the result by
our method is equal to the expert’s decision. However, the
result for normal data is slightly different from the
decisions made by the experts. The reason for this could be
well explained by Fig. 6. According to the decision rule
performed by KEPCO, if the amount of gas for CO

. (described as number 2 in the figure) is less than 300, the

transformer is determined as normal. Also, if the amount of
gas for CO; (described as number 7 in the figure) is less
than 4000, the transformer is determined as normal.
However, two specific gases are close to the boundary of
care condition as seen in Fig. 2. More specifically, the
values of gases are 287 and 3460 for CO and CO.,,
respectively. By considering these relations, our method
concludes that this transformer is in care condition. Table 2
indicates the diagnosis performance according to care
conditions. As seen in Table 2, the diagnosis performance
by our method shows the same decision criteria comparing
with the determination by experts except for insulation
degradation.

Table 2. Diagnosis performance with respect to normal
and care conditions

Expert’s decision’ Our method T
Normal Care Normal Care
379 0 364 15

0 92 0 92

1 =
o ()Bé q
®
%
®
£ 06 i
s
c
$
% 04 ]
g —

02 -
0 i A
[} 100 200 300 400
The number of data

Fig. 6. Output value for normal condition in the RBF
neural network
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Table 3. Diagnosis performance according to care conditions

Care conditions Exp.ert’s Our Difference
decision method

Insulator 2

degradation 35 33 Arc (1), CO, (1)
CO2 excess 9 9 0
Arc discharge 36 36 0
Low overheat 1 1 0
High overheat 11 11 0

4.3 Analysis of aging degree for normal transformer

Specific gas is generated and accumulated in the oil as
time goes on in spite of the normal condition. Therefore,
potential possibility and degree of aging could be different
even with transformers that are in normal condition. In fact,
the amount of these gases indicates a potential of
approaching to a care or a faulted condition as well as
being in those conditions. For analyzing the aging degree
for normal state, we classify the normal condition as three
types such as “ Good”, “ Medium”, and “ Low”. This
criterion is performed by considering output value of a
normal unit in the RBF neural network. More specifically,
when the output value is larger than 0.87, our method
determines that the transformer is definitely in “ Good”
condition. Table 4 shows the diagnosis results according to
healthy conditions. By applying this technique, we analyze
our data according to healthy conditions. As seen in Fig. 9,
we see that most transformers are in “ Good” condition.
Fig. 9 shows the amount of dissolved gas according to
~ healthy conditions for normal transformers. From Fig. 9,
the amount of specific gas is increasing according to aging
degree such as from “ Good” condition to “ Low”
condition. Fig. 10 indicates the aging degree according to
healthy conditions in normal state. This figure displays the
aging degree with respect to insulator degradation and CO,

excess.

From these results, the aging degree increases as the
condition changes from “Good” to “Low” condition.
Especially, aging degree is close to 40% in case of
transformers in “Low” condition. From these experimental
results, we are convinced that our method makes it possible
to estimate the aging degree for normal transformers as
well as the causes of transformers in care conditions.

Table 4. Diagnosis performance according to healthy

conditions
Good Medium Low
Condition (thr> 0.87) (0.6<thr< | (0.4<thr<
‘ <=0.87) <=0.6)
Normal (364) 304 45 15
Care state Normal state
150 T T
Care Low Medium Good
g condition condition condition cordition
L 160|-
%
a—, -
a
E
H
£
& soff :
=
0 o 1
0 02 04 08 0.8 1

Output value for normal state
Fig. 8. Data distribution according to healthy conditions

Nommalized amplitude

Dissolved gas

(a) Good condition
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5. Conclusion

In this paper, we proposed a method of power
transformer diagnosis based on fuzzy clustering and RBF
neural network. Prior to applying the neural network, input
data is normalized by the fuzzy membership function
named sigmoid function. Next, fuzzy clustering is used for
selecting the efficient training data and for reducing
learning process time. Finally, the degree and the origin of
aging were determined by RBF neural networks. From
various experimental results, we conclude that the
proposed method is efficient in estimating the aging degree
for normal transformers as well as the cause of
transformers in care conditions.
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