• 제목/요약/키워드: Nelder Mead

검색결과 43건 처리시간 0.021초

Nelder-Mead 심플렉스 알고리듬의 수렴에 관한 수치실험 (Numerical Experiment for the Properties of Nelder-Mead Simplex Algorithm Convergence)

  • 현창헌;이병기
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.35-44
    • /
    • 2002
  • To find the optimal solution as rapidly and exactly as possible with Nelder-Mead simplex algorithm, the present values of the reflection, expansion, contraction and/or shrink parameters of this algorithm are needed to be changed at appropriate time during the search process. The reflection parameter is selected in this study in order to be changed because reflection, expansion and contraction process can be simultaneously effected by only this parameter. Two independent indices for determining whether the present value of the reflection parameter of this algorithm should be changed or not during the search process are suggested in this study. Those indices were made of the equations of Nelder-Mead simplex algorithm's convergence criterion and Dennis-Wood's convergence criterion, respectively. It is appeared that the optimal solution can be find with smaller numbers of objective function evaluation than the original Nelder-Mead's one with fixed parameter when the those indices are used during the search process. and the more remarkable reduction effect of the number of an objective function evaluation can be obtained when the latter index is used.

  • PDF

Nelder-Mead, Dennis-Woods Method와 MATLAB의 FMINS의 비교실험 (Comparative Experiment of FMINS with Nelder-Mead and Dennis-Woods Method)

  • 최영일;현창헌
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.361-368
    • /
    • 1999
  • The Nelder-Mead simplex algorithm has become on of the most widely used methods for nonlinear unconstrained optimization, since 1965. Recently, this algorithm has been reevaluated and many papers on this algorithm are being published. The MATLAB computer software, highly renown in engineering, also provides the Nelder-Mead algorithm and the Denis-Woods modification with FMINS function. The authors made C++ code of these algorithms and compared with FMINS on the convergence behavior and the exactness of solutions. It shows that MATLAB's FMINS is inferior to author's C++ code. So, FMINS should be corrected for every user.

  • PDF

Nelder-Mead 기법을 이용한 NSRPM의 매개변수 추청 연구 (Parameter Estimation of NSRPM using a Nelder-Mead Method)

  • 조현곤;김광섭;이재응
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.710-710
    • /
    • 2012
  • 구형펄스모형(Rectangular Pulse Model)에서 반영하지 못하는 강우의 군집특성을 잘 반영하는 NSRPM(Neyman-Scott Rectangular Pulse Model) 강우생성 모형은 수자원 분야에 널리 쓰이고 있다. 일반적으로 NSRPM의 5개의 매개변수를 추정하는 최적화기법으로 DFP(Davidon-Fletcher-Powell)과 유전자알고리즘(Genetic Algorithm)을 사용하고 있다. 그러나 DFP는 주어진 초기 값에 따라 민감하며 각 반복 단계마다 헤시안행렬(Hessian Matrix)을 계산하여야 하며 추정된 전체의 해가 국지해에 수렴 할 수 있는 단점이 있다. 유전자 알고리즘을 DFP와 다르게 헤시안 행렬을 사용하지 않고 최적화를 할 수 있다는 장점이 있으나 시간이 오래 걸리는 단점이 있다. 이에 본 연구에서는 이러한 단점을 보완, 강화 하기위해서 최적화 기법으로 반복 단계마다 미분계산이 필요하지 않고 빠른 속도로 계산이 가능한 Nelder-Mead 알고리즘 이용하여 NSRPM매개변수를 추정하고 정확도를 비교하였다. 표 1은 각 기법을 이용하여 추정된 매개변수를 이용하여 생성한 강우의 통계특성과 관측된 통계특성의 상대오차를 나타낸 것이다. 괄호 안 숫자는 중첩되지 않는 누적시간을 나타낸다. 상대오차는 다음과 같다(식 1). 분석결과 Nelder-Mead 기법이 1시간의 평균, 공분산과 6시간 분산 등 전체적으로 GA, DFP보다 높은 정확도를 보였다.

  • PDF

추계학적 강우모형 매개변수 추정기법의 적합성 분석 (Analysis of the Applicability of Parameter Estimation Methods for a Stochastic Rainfall Model)

  • 조현곤;김광섭;이재응
    • 대한토목학회논문집
    • /
    • 제34권4호
    • /
    • pp.1105-1116
    • /
    • 2014
  • 추계학적 강우모형 NSRPM (Neyman-Scott Rectangular Pulse Model)은 RPM (Rectangular Pulse Model)에서 반영하지 못하는 강우의 군집특성을 잘 반영하여 시간 스케일의 강우를 생성함으로서 수문학적 적용성이 뛰어난 강우모형이다. NSRPM은 5개의 모형 매개변수로 이루어져 있으며 매개변수 추정을 위하여 최적화 기법으로 널리 쓰이고 있는 수치해석 기법인 DFP (Davidon-Fletcher-Powell)기법, 직접적 탐색 기법인 유전자 알고리즘을 사용하고 있다. 그러나 DFP 기법은 입력 초기값에 민감하며 국소 최저치에 수렴하는 확률이 높은 단점이 있으며 유전자 알고리즘기법은 탐색에 소요되는 시간이 많이 걸린다는 단점이 있다. 본 연구에서 사용된 Nelder-Mead기법은 순차적 탐색기법으로 연산 속도가 빠르며 입력 초기값이 필요하지 않아 사용하기 쉬운 장점을 가지고 있다. 본 연구는 전국 지상기상관측소 59개소를 대상으로 1973-2011년 39년 동안의 시간강우 자료를 수집하고 최적화 기법 DFP 기법, 유전자 알고리즘, Nelder-Mead 기법을 이용하여 NSRPM의 매개변수를 추정하여 지속시간 1시간, 6시간, 12시간, 24시간 별 평균, 분산, 공분산에 대해서 각 기법의 정확성을 평가하였다. 본 연구결과 전반적으로 Nelder-Mead기법이 가장 높은 정확도를 보였으며 유전자 알고리즘, DFP 기법 순으로 나타났다.

해상 실측 자료를 이용한 횡동요 조종 계수 식별 (Parameter Identifications of Roll Maneuvering Coefficients Based on Sea Trial Data)

  • 김찬기
    • 대한조선학회논문집
    • /
    • 제35권2호
    • /
    • pp.29-37
    • /
    • 1998
  • 물수체의 선형 운동방정식은 형상 설계와 제어기 설계의 지배방정식으로 사용되는 중요한 설계인자이다. 그러나, 경험식, 이론적 계산 및 모형 시험으로부터 획득한 운동방정식 내의 조종 계수들은 오차를 포함하고 있어 해상 시험을 동해 이에 대한 검증을 수행하여야 한다. 본 연구에서는 실측 자료에 대해 병렬 확장 칼만 필터, Nelder & Mead Simplex 탐색법 및 유전적 알고리즘을 적용하여 몰수체의 주요 횡 동요 계수들을 식별/비교하였다. 결론적으로 Nelder & Mead Simplex 탐색법이 사용된 수학 모형과 해상 시험 자료에 대해 가장 만족스런 결과를 주고 있다.

  • PDF

강우모의모형의 모수 추정 최적화 기법의 적합성 분석 (Analysis of the applicability of parameter estimation methods for a stochastic rainfall generation model)

  • 조현곤;이경은;김광섭
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1447-1456
    • /
    • 2017
  • 강우현상을 구조적으로 모형화한 확률적 강우모의모형의 활용성이 증대되는 상황에서 확률적 강우모의모형의 모수에 대한 정확한 추정은 매우 중요하다. 본 연구에서는 확률적 강우모의모형 (Neyman-Scott rectangular pulse model, NSRPM)의 모수를 DFP (Davidon-Fletcher-Powell), GA (genetic algorithm), Nelder-Mead, DE (differential evolution) 기법으로 추정하고 추정된 모수의 적합성을 분석하고 지역특성에 적합한 모수 추정 기법을 제시하였다. 낙동강 유역의 20개 강우 관측 지점을 대상으로 1973년-2017년 기간 동안의 여름철 1시간 강수자료 이용하여 산정된 모형 모수를 분석한 결과, 전반적으로 DE, Nelder-Mead기법이 가장 좋은 결과를 보였으며 DFP, GA기법은 상대적으로 낮은 적합도를 보였다.

Fractional Order Modeling and Control of Twin Rotor Aero Dynamical System using Nelder Mead Optimization

  • Ijaz, Salman;Hamayun, Mirza Tariq;Yan, Lin;Mumtaz, Muhammad Faisal
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1863-1871
    • /
    • 2016
  • This paper presents an application of fractional order controller for the control of multi input multi output twin rotor aerodynamic system. Dynamics of the considered system are highly nonlinear and there exists a significant cross-coupling between the horizontal and vertical axes (pitch & yaw). In this paper, a fractional order model of twin rotor aerodynamic system is identified using input output data from nonlinear system. Based upon identified fractional order model, a fractional order PID controller is designed to control the angular position of level bar of twin rotor aerodynamic system. The parameters of controller are tuned using Nelder-Mead optimization and compared with particle swarm optimization techniques. Simulation results on the nonlinear model show a significant improvement in the performance of fractional order PID controller as compared to a classical PID controller.

Design optimization of spot welded structures to attain maximum strength

  • Ertas, Ahmet H.
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.995-1009
    • /
    • 2015
  • This study presents design optimization of spot welded structures to attain maximum strength by using the Nelder-Mead (Simplex) method. It is the main idea of the algorithm that the simulation run is executed several times to satisfy predefined convergence criteria and every run uses the starting points of the previous configurations. The material and size of the sheet plates are the pre-assigned parameters which do not change in the optimization cycle. Locations of the spot welds, on the other hand, are chosen to be design variables. In order to calculate the objective function, which is the maximum equivalent stress, ANSYS, general purpose finite element analysis software, is used. To obtain global optimum locations of spot welds a methodology is proposed by modifying the Nelder-Mead (Simplex) method. The procedure is applied to a number of representative problems to demonstrate the validity and effectiveness of the proposed method. It is shown that it is possible to obtain the global optimum values without stacking local minimum ones by using proposed methodology.

A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection

  • Pan, Chu-Dong;Yu, Ling;Chen, Ze-Peng;Luo, Wen-Feng;Liu, Huan-Lin
    • Smart Structures and Systems
    • /
    • 제17권6호
    • /
    • pp.957-980
    • /
    • 2016
  • Structural damage detection (SDD) is a challenging task in the field of structural health monitoring (SHM). As an exploring attempt to the SDD problem, a hybrid self-adaptive Firefly-Nelder-Mead (SA-FNM) algorithm is proposed for the SDD problem in this study. First of all, the basic principle of firefly algorithm (FA) is introduced. The Nelder-Mead (NM) algorithm is incorporated into FA for improving the local searching ability. A new strategy for exchanging the information in the firefly group is introduced into the SA-FNM for reducing the computation cost. A random walk strategy for the best firefly and a self-adaptive control strategy of three key parameters, such as light absorption, randomization parameter and critical distance, are proposed for preferably balancing the exploitation and exploration ability of the SA-FNM. The computing performance of the SA-FNM is evaluated and compared with the basic FA by three benchmark functions. Secondly, the SDD problem is mathematically converted into a constrained optimization problem, which is then hopefully solved by the SA-FNM algorithm. A multi-step method is proposed for finding the minimum fitness with a big probability. In order to assess the accuracy and the feasibility of the proposed method, a two-storey rigid frame structure without considering the finite element model (FEM) error and a steel beam with considering the model error are taken examples for numerical simulations. Finally, a series of experimental studies on damage detection of a steel beam with four damage patterns are performed in laboratory. The illustrated results show that the proposed method can accurately identify the structural damage. Some valuable conclusions are made and related issues are discussed as well.

Enhanced Antibiotic Production by Streptomyces sindenensis Using Artificial Neural Networks Coupled with Genetic Algorithm and Nelder-Mead Downhill Simplex

  • Tripathi, C.K.M.;Khan, Mahvish;Praveen, Vandana;Khan, Saif;Srivastava, Akanksha
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권7호
    • /
    • pp.939-946
    • /
    • 2012
  • Antibiotic production with Streptomyces sindenensis MTCC 8122 was optimized under submerged fermentation conditions by artificial neural network (ANN) coupled with genetic algorithm (GA) and Nelder-Mead downhill simplex (NMDS). Feed forward back-propagation ANN was trained to establish the mathematical relationship among the medium components and length of incubation period for achieving maximum antibiotic yield. The optimization strategy involved growing the culture with varying concentrations of various medium components for different incubation periods. Under non-optimized condition, antibiotic production was found to be $95{\mu}g/ml$, which nearly doubled ($176{\mu}g/ml$) with the ANN-GA optimization. ANN-NMDS optimization was found to be more efficacious, and maximum antibiotic production ($197{\mu}g/ml$) was obtained by cultivating the cells with (g/l) fructose 2.7602, $MgSO_4$ 1.2369, $(NH_4)_2PO_4$ 0.2742, DL-threonine 3.069%, and soyabean meal 1.952%, for 9.8531 days of incubation, which was roughly 12% higher than the yield obtained by ANN coupled with GA under the same conditions.