DOI QR코드

DOI QR Code

Analysis of the Applicability of Parameter Estimation Methods for a Stochastic Rainfall Model

추계학적 강우모형 매개변수 추정기법의 적합성 분석

  • 조현곤 (경북대학교 건설환경에너지공학부) ;
  • 김광섭 (경북대학교 건설환경에너지공학부) ;
  • 이재응 (아주대학교 환경건설교통공학부)
  • Received : 2013.08.08
  • Accepted : 2014.05.30
  • Published : 2014.08.01

Abstract

A stochastic rainfall model, NSRPM (Neyman-Scott Rectangular Pulse Model), is able to reflect the cluster characteristics of rainfall events which is unable in the RPM (Rectangular Pulse Model). Therefore NSRPM has advantage in the hydrological applications. The NSRPM consists of five model parameters and the parameters are estimated using optimization techniques such as DFP (Davidon-Fletcher-Powell) method and genetic algorithm. However the DFP method is very sensitive in initial values and is easily converge to local minimum. Also genetic algorithm has disadvantage of long computation time. Nelder-Mead method has several advantages of short computation time and no need of a proper initial value. In this study, the applicability of parameter estimation methods was evaluated using rainfall data of 59 national rainfall networks from 1973-2011. Overall results demonstrated that accuracy in parameter estimation is in the order of Nelder-Mead method, genetic algorithm, and DFP method.

추계학적 강우모형 NSRPM (Neyman-Scott Rectangular Pulse Model)은 RPM (Rectangular Pulse Model)에서 반영하지 못하는 강우의 군집특성을 잘 반영하여 시간 스케일의 강우를 생성함으로서 수문학적 적용성이 뛰어난 강우모형이다. NSRPM은 5개의 모형 매개변수로 이루어져 있으며 매개변수 추정을 위하여 최적화 기법으로 널리 쓰이고 있는 수치해석 기법인 DFP (Davidon-Fletcher-Powell)기법, 직접적 탐색 기법인 유전자 알고리즘을 사용하고 있다. 그러나 DFP 기법은 입력 초기값에 민감하며 국소 최저치에 수렴하는 확률이 높은 단점이 있으며 유전자 알고리즘기법은 탐색에 소요되는 시간이 많이 걸린다는 단점이 있다. 본 연구에서 사용된 Nelder-Mead기법은 순차적 탐색기법으로 연산 속도가 빠르며 입력 초기값이 필요하지 않아 사용하기 쉬운 장점을 가지고 있다. 본 연구는 전국 지상기상관측소 59개소를 대상으로 1973-2011년 39년 동안의 시간강우 자료를 수집하고 최적화 기법 DFP 기법, 유전자 알고리즘, Nelder-Mead 기법을 이용하여 NSRPM의 매개변수를 추정하여 지속시간 1시간, 6시간, 12시간, 24시간 별 평균, 분산, 공분산에 대해서 각 기법의 정확성을 평가하였다. 본 연구결과 전반적으로 Nelder-Mead기법이 가장 높은 정확도를 보였으며 유전자 알고리즘, DFP 기법 순으로 나타났다.

Keywords

References

  1. Austin, P. M. and Houze, R. A. (1972). "Analysis of the structure of precipitation patterns in new england."Journal of Applied Meteorology, Vol. 11, pp. 926-934. https://doi.org/10.1175/1520-0450(1972)011<0926:AOTSOP>2.0.CO;2
  2. Burlando, P. and Rosso, R. (1991). "Comment on parameter estimation and sensitivity analysis for the modified Bartlett- Lewis rectangular pulses mode of rainfall by S. Islam et al." Journal of Geophysical Research, Vol. 96, No. D5, pp. 9391-9395. https://doi.org/10.1029/91JD00288
  3. Burlando, P. and Rosso, R. (1996). "Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation." Journal of Hydrology, Vol. 187, pp. 45-64. https://doi.org/10.1016/S0022-1694(96)03086-7
  4. Cowpertwait, P. S. P. (1991). "Further developments of the Neyman-Scott clustered point process for modeling rainfall." Water Resources Research, Vol. 27, No. 7, pp. 1431-1438. https://doi.org/10.1029/91WR00479
  5. Cowperwait, P. S. P., O'Connell, P. E., Metcalfe, A. V. and Mawdsley, J. A. (1996). "Stochastic point process modelling of rainfall. I. Single-site fitting and validation."Journal of Hydrology, Vol. 175, pp. 17-46. https://doi.org/10.1016/S0022-1694(96)80004-7
  6. Entekhabi, D., Rodriguez-Iturbe, I. and Eagleson, P. S. (1989). "Probabilistic representation of the temporal rainfall by a modified Neyman-Scott rectangular pulse model: Parameter Estimation and Validation."Water Resources Research, Vol. 25, No. 2, pp. 295-302. https://doi.org/10.1029/WR025i002p00295
  7. Islam, S., Entekhabi, D., Bras, R. L. and Rodriguez-Iturbe, I. (1990). "Parameter estimation and sensitivity analysis for the modified Bartlett-Lewis rectangular pulses model of rainfall."Journal of Geophysical Research, Vol. 95, No. D3, pp. 2093-2100. https://doi.org/10.1029/JD095iD03p02093
  8. Jeong, C. S. (2009). "Study of direct parameter estimation for Neyman-Scott ractangular pulse model."Journal of Korea Water Resources Association, Vol. 42, No. 11, pp. 1017-1028 (in Korean). https://doi.org/10.3741/JKWRA.2009.42.11.1017
  9. Kim, J. H., Lee, J. S., Lee, J. J. and Son, K. I. (1998). "A modeling of daily precipitation series using the poisson cluster process." Journal of Korean Society of Civil Engineers, Vol. 18, No. 2(3), pp. 231-241 (in Korean).
  10. Kum, J. H., Ahn, J. H., Kim, J. H. and Yoon, Y. N. (2001). "Parameter estimation of a point rainfall model, Neyman-Scott rectangular pulses model."Proceedings of Korea Water Resources Association Conference, pp. 206-211 (in Korean).
  11. Nelder, J. A. and Mead, R. (1965). "A simplex method for function minimization."The Computer Journal, Vol. 7, No. 4, pp. 308-313. https://doi.org/10.1093/comjnl/7.4.308
  12. Rodriguez-Iturbe, I. (1986). "Scale of fluctuation of rainfall models." Water Resources Research, Vol. 22, No. 9, pp. 15-37 https://doi.org/10.1029/WR022i001p00015
  13. Rodriguez-Iturbe, I., Cox, D. R. and Isham. V. (1988). "A point process for rainfall: Further Development."Proceedings of the Royal Society of London A, 417, pp. 283-298. https://doi.org/10.1098/rspa.1988.0061
  14. Rodriguez-Iturbe, I., Cox, D. R. and Isham, V. (1987). "Some models for rainfall based on stochastic point processes."Proceedings of the Royal Society of London A, 410, pp. 269-288. https://doi.org/10.1098/rspa.1987.0039
  15. Shin, J. Y., Joo, K. W. and Heo, J. H. (2011). "A study of new modified Neyman-Scott rectangular pulse model development using direct parameter estimation."Journal of Korea Water Resources Association, Vol. 44, No. 2, pp. 135-144 (in Korean). https://doi.org/10.3741/JKWRA.2011.44.2.135
  16. Shin, J. Y., Jeong, C. S., Kim, T. S., Heo, J. H. (2008). "Study of direct parameter estimation for Neyman-scott rectangular pulse model."Proceedings of Korean Society of Civil Engineers Conference, pp. 1612-1616 (in Korean).
  17. Velghe, T., Troch, P. A., De Troch, F. P. and Van de Velde, J. (1994). "Evaluation of cluster-based rectangular pulse point process models for rainfall."Water Resource Research, Vol. 30, No. 10, pp. 2847-2857. https://doi.org/10.1029/94WR01496

Cited by

  1. Temporal Disaggregation of Daily Rainfall data using Stochastic Point Rainfall Model vol.18, pp.2, 2018, https://doi.org/10.9798/KOSHAM.2018.18.2.493