• Title/Summary/Keyword: Neighborhood Search

Search Result 113, Processing Time 0.026 seconds

On the Global Convergence of Univariate Dynamic Encoding Algorithm for Searches (uDEAS)

  • Kim, Jong-Wook;Kim, Tae-Gyu;Choi, Joon-Young;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.571-582
    • /
    • 2008
  • This paper analyzes global convergence of the univariate dynamic encoding algorithm for searches (uDEAS) and provides an application result to function optimization. uDEAS is a more advanced optimization method than its predecessor in terms of the number of neighborhood points. This improvement should be validated through mathematical analysis for further research and application. Since uDEAS can be categorized into the generating set search method also established recently, the global convergence property of uDEAS is proved in the context of the direct search method. To show the strong performance of uDEAS, the global minima of four 30 dimensional benchmark functions are attempted to be located by uDEAS and the other direct search methods. The proof of global convergence and the successful optimization result guarantee that uDEAS is a reliable and effective global optimization method.

Simulated squirrel search algorithm: A hybrid metaheuristic method and its application to steel space truss optimization

  • Pauletto, Mateus P.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.579-590
    • /
    • 2022
  • One of the biggest problems in structural steel calculation is the design of structures using the lowest possible material weight, making this a slow and costly process. To achieve this objective, several optimization methods have been developed and tested. Nevertheless, a method that performs very efficiently when applied to different problems is not yet available. Based on this assumption, this work proposes a hybrid metaheuristic algorithm for geometric and dimensional optimization of space trusses, called Simulated Squirrel Search Algorithm, which consists of an association of the well-established neighborhood shifting algorithm (Simulated Annealing) with a recently developed promising population algorithm (Squirrel Search Algorithm, or SSA). In this study, two models are tried, being respectively, a classical model from the literature (25-bar space truss) and a roof system composed of space trusses. The structures are subjected to resistance and displacement constraints. A penalty function using Fuzzy Logic (FL) is investigated. Comparative analyses are performed between the Squirrel Search Algorithm (SSSA) and other optimization methods present in the literature. The results obtained indicate that the proposed method can be competitive with other heuristics.

ACA: Automatic search strategy for radioactive source

  • Jianwen Huo;Xulin Hu;Junling Wang;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3030-3038
    • /
    • 2023
  • Nowadays, mobile robots have been used to search for uncontrolled radioactive source in indoor environments to avoid radiation exposure for technicians. However, in the indoor environments, especially in the presence of obstacles, how to make the robots with limited sensing capabilities automatically search for the radioactive source remains a major challenge. Also, the source search efficiency of robots needs to be further improved to meet practical scenarios such as limited exploration time. This paper proposes an automatic source search strategy, abbreviated as ACA: the location of source is estimated by a convolutional neural network (CNN), and the path is planned by the A-star algorithm. First, the search area is represented as an occupancy grid map. Then, the radiation dose distribution of the radioactive source in the occupancy grid map is obtained by Monte Carlo (MC) method simulation, and multiple sets of radiation data are collected through the eight neighborhood self-avoiding random walk (ENSAW) algorithm as the radiation data set. Further, the radiation data set is fed into the designed CNN architecture to train the network model in advance. When the searcher enters the search area where the radioactive source exists, the location of source is estimated by the network model and the search path is planned by the A-star algorithm, and this process is iterated continuously until the searcher reaches the location of radioactive source. The experimental results show that the average number of radiometric measurements and the average number of moving steps of the ACA algorithm are only 2.1% and 33.2% of those of the gradient search (GS) algorithm in the indoor environment without obstacles. In the indoor environment shielded by concrete walls, the GS algorithm fails to search for the source, while the ACA algorithm successfully searches for the source with fewer moving steps and sparse radiometric data.

Pallet Size Optimization for Special Cargo based on Neighborhood Search Algorithm (이웃해 탐색 알고리즘 기반의 특수화물 팔레트 크기 최적화)

  • Hyeon-Soo Shin;Chang-Hyeon Kim;Chang-Wan Ha;Hwan-Seong Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.250-251
    • /
    • 2023
  • The pallet, typically a form of tertiary packaging, is a flat structure used as a base for the unitization of goods in the supply chain. In addition, standard pallets such as T-11 and T-12 are used throughout the logistics industry to reduce the cost and enhance the efficiency of transportation. However, in the case of special cargo, it is impossible to handle such cargo using a standard pallet due to its size and weight, so many have developed and are now using their customized pallet. Therefore, this study suggests a pallet size optimization method to calculate the optimal pallet size, which minimizes the loss of space on a pallet. The main input features are the specifications and the storage quantity of each cargo, and the optimization method that has modified the Neighborhood Search Algorithm calculates the optimal pallet size. In order to verify the optimality of the developed algorithm, a comparative analysis has been conducted through simulation.

  • PDF

Adaptive Hybrid Genetic Algorithm Approach to Multistage-based Scheduling Problem in FMS Environment (FMS환경에서 다단계 일정계획문제를 위한 적응형혼합유전 알고리즘 접근법)

  • Yun, Young-Su;Kim, Kwan-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.3
    • /
    • pp.63-82
    • /
    • 2007
  • In this paper, we propose an adaptive hybrid genetic algorithm (ahGA) approach for effectively solving multistage-based scheduling problems in flexible manufacturing system (FMS) environment. The proposed ahGA uses a neighborhood search technique for local search and an adaptive scheme for regulation of GA parameters in order to improve the solution of FMS scheduling problem and to enhance the performance of genetic search process, respectively. In numerical experiment, we present two types of multistage-based scheduling problems to compare the performances of the proposed ahGA with conventional competing algorithms. Experimental results show that the proposed ahGA outperforms the conventional algorithms.

  • PDF

An Al Approach with Tabu Search to solve Multi-level Knapsack Problems:Using Cycle Detection, Short-term and Long-term Memory

  • Ko, Il-Sang
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.3
    • /
    • pp.37-58
    • /
    • 1997
  • An AI approach with tabu search is designed to solve multi-level knapsack problems. The approach performs intelligent actions with memories of historic data and learning effect. These action are developed ont only by observing the attributes of the optimal solution, the solution space, and its corresponding path to the optimal, but also by applying human intelligence, experience, and intuition with respect to the search strategies. The approach intensifies, or diversifies the search process appropriately in time and space. In order to create a good neighborhood structure, this approach uses two powerful choice rules that emphasize the impact of candidate variables on the current solution with respect to their profit contribution. "Pseudo moves", similar to "aspirations", support these choice rules during the evaluation process. For the purpose of visiting as many relevant points as possible, strategic oscillation between feasible and infeasible solutions around the boundary is applied. To avoid redundant moves, short-term (tabu-lists), intemediate-term (cycle-detection), and long-term (recording frequency and significant solutions for diversfication) memories are used. Test results show that among the 45 generated problems (these problems pose significant or insurmountable challenges to exact methods) the approach produces the optimal solutions in 39 cases.lutions in 39 cases.

  • PDF

A Probabilistic Filtering Technique for Improving the Efficiency of Local Search (국지적 탐색의 효율향상을 위한 확률적 여과 기법)

  • Kang, Byoung-Ho;Ryu, Kwang-Ryel
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.246-254
    • /
    • 2007
  • Local search algorithms start from a certain candidate solution and probe its neighborhood to find ones with improved quality. This paper proposes a method of probabilistically filtering out bad-looking neighbors based on a simple low-cost preliminary evaluation heuristics. The probabilistic filtering enables us to save time wasted on fully evaluating those solutions that will eventually be trashed, and thus improves the search efficiency by allowing us to spend more time on examining better looking solutions. Experiments with two large-scaled real-world problems, which are a traffic signal control problem in traffic network and a load balancing problem in production scheduling, have shown that the proposed method finds better quality solutions, given the same amount of CPU time.

Built-in self test for testing neighborhood pattern sensitive faults in content addressable memories (Content addressable memory의 이웃패턴감응고장 테스트를 위한 내장된 자체 테스트 기법)

  • 강용석;이종철;강성호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.8
    • /
    • pp.1-9
    • /
    • 1998
  • A new parallel test algorithm and a built-in self test (BIST) architecture are developed to test various types of functional faults efficiently in content addressable memories (CAMs). In test mode, the read oepratin is replaced by one parallel content addressable search operation and the writing operating is performed parallely with small peripheral circuit modificatins. The results whow that an efficient and practical testing with very low complexity and area overhead can be achieved.

  • PDF

Tabu search Algorithm for Maximizing Network Lifetime in Wireless Broadcast Ad-hoc Networks (무선 브로드캐스트 애드혹 네트워크에서 네트워크 수명을 최대화하기 위한 타부서치 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1196-1204
    • /
    • 2022
  • In this paper, we propose an optimization algorithm that maximizes the network lifetime in wireless ad-hoc networks using the broadcast transmission method. The optimization algorithm proposed in this paper applies tabu search algorithm, a metaheuristic method that improves the local search method using the memory structure. The proposed tabu search algorithm proposes efficient encoding and neighborhood search method to the network lifetime maximization problem. By applying the proposed method to design efficient broadcast routing, we maximize the lifetime of the entire network. The proposed tabu search algorithm was evaluated in terms of the energy consumption of all nodes in the broadcast transmission occurring in the network, the time of the first lost node, and the algorithm execution time. From the performance evaluation results under various conditions, it was confirmed that the proposed tabu search algorithm was superior to the previously proposed metaheuristic algorithm.

Design of Distributed Computer Systems Using Tabu Search Method (Tabu 탐색 기법을 이용한 분산 컴퓨팅 시스템 설계)

  • Hong, Jin-Won;Kim, Jae-Yearn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.143-152
    • /
    • 1995
  • This paper determines the allocation of computers and data files to minimize the sum of processing and communication costs which occur in processing jobs at each node. The problem of optimally configuring a distributed computer system belongs to the class of NP-Complete problems and the object function of this paper is nonlinear function and is hard to solve. This paper seeks the solution of distributed processing system by Tabu Search. Firstly, it presents the method of generating the starting solution proper to the distributed processing system. Secondly, it develops the method of searching neighborhood solutions. Finally, it determines the Tabu restriction appropriate to the distributed processing system. According to the experimental results, this algorithm solves a sized problems in reasonable time and is effective in the convergence of the solution. The algorithm developed in this paper is also applicable to the general allocation problems of the distributed processing system.

  • PDF