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In this paper, we propose an adaptive hybrid genetic algorithm (ahGA) approach for effectively
solving multistage-based scheduling problems in flexible manufacturing system (FMS) environment.
The proposed ahGA uses a neighborhood search technique for local search and an adaptive scheme
for regulation of GA parameters in order to improve the solution of FMS scheduling problem and
to enhance the performance of genetic search process, respectively.

In numerical experiment, we present two types of muitistage-based scheduling problems to
compare the performances of the proposed ahGA with conventional competing algorithms. Experimental
results show that the proposed ahGA outperforms the conventional algorithms.
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1. Introduction detailed description of manufacturing capabilities
and requirements for transforming raw materials
In modern manufacturing systems such as into end products through a multistage process.
flexible manufacturing system (FMS), multi- In multistage-based scheduling, the task of
stage-based scheduling problem composed of creating any feasible schedule, let alone the one
multi-state components is common. It provides a with the optimal solution, is usually quite compli-

* This study was supported by research funds from Chosun University, 2006.
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cated because of the complex interrelationships
between the units of the different stages. The
search space of feasible schedules, therefore,
grows exponentially as there are certain increases
in the number of different jobs that must be proc-
essed, the number of the operations required by
each job, and the number of facilities that can per-
form the process of each job. This exponential
growth makes it very difficult or even impossible
to use conventional mathematical programming or
exhaustive search approaches for finding global
optimal schedule in terms of any performance
measure for the problems with practical complex-
ity (Belton and Elder, 1996 ; Blazewicz et al.,
1994 ; De and Lee, 1990 ; French, 1982).
Recently a glowing interest in applying ge-
netic algorithm (GA) approaches to effectively
deal with multistage-based scheduling in FMS en-
vironment has been shown (Jawahar et al., 1998;
Gen and Cheng, 2000 ; Kim et al, 2004 ; Yang,
2001). The important advantage with GA ap-
proaches, when compared with conventional ap-
proaches, is that they are simple in principle and
abstract the specific problem characteristics, which
makes it possible to apply them to wide range of
scheduling problems. However, their applications
to more complex scheduling environments such
as multistage-based scheduling problems have
been restricted since creating the complete sched-
ules for each job highly requires computational ef-
fort (Charalambous, 1997). There are also other
problems in representing GA population, design-
ing GA operators, and controlling GA parameters,

which are liable to generate illegal schedules.
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To overcome these weaknesses of GA in
application to multistage-based scheduling prob-
lem, hybridized algorithms using GA and conven-
tional heuristics have been developed (Gen and
Cheng, 1997 ; Yun, 2006). With hybrid appro-
aches, GA can guarantee a global optimal solution
in global search space using the increase in-
formation from conventional heuristics.

Holsapple et al. (1993) investigated a hy-
brid scheduler combining GA with conventional
heuristics. They tried to generate job sequence
and feasible schedule simultaneously and also de-
veloped a new sub-tour chunking crossover and
single-swap mutation for representing job sequence.
Yang (2001) developed a GA-based discrete dy-
namic programming (GA-DDP) approach to gen-
erate static schedules in FMS environment. This
approach generates job sequence in the GA ap-
proach and the local optimization of partial sched-
ules in the DDP approach.

However, the above-stated two hybrid ap-
proaches may not guarantee to generate global op-
timal schedule for large-scaled and multistage-
based scheduling problem in the FMS environ-
ment with multi-objective functions, since the first
approach only concentrates on two-stage scheduling
problem and the second approach on single ob-
jective scenario. They do not also consider alter-
native schedules that may be considered in FMS
environment when optimal schedule is not avail-
able.

More recently Kim et al. (2004) proposed
a network-based hybrid GA (nhGA) approach to

generate static scheduling in FMS environment
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with multi-objective functions. They used an
adaptive scheme using a fuzzy logic controller
(FLC) to adaptively regulate the rate of GA
parameters. However, only mutation operator was
used for the adaptive scheme, crossover operator
was not applied in the nhGA procedure. In gen-
eral, the use of crossover operator in GA im-
plementation has been known as a key factor for
improving the performance of GA. Therefore,
both the use of crossover and mutation operators
usually produces better performance than that of
one operation alone. Also, there are some weak-
nesses in applying the FLC to the nhGA, that is,
the computational scheme for controlling the giv-
en maximum and mininum values of fuzzy mem-
bership function highly depend on the problems un-
der consideration.

To overcome the above-stated weaknesses,
we develop a new adaptive hybrid GA (ahGA).
The proposed ahGA uses i) GA approach with
adaptive scheme and ii) neighborhood search ap-
proach with local search, in order to effectively
locate the optimal schedule of multistage-based
scheduling problems in FMS environment with
multi-objective functions. The adaptive scheme
used regulates the rates of crossover and mutation
operators adaptively, and the local search per-
forms a precision search around the convergence
area after the run of GA.

The rests of the paper are organized as
follows. In Section 2, we describe a hypothetical
concept and description of multistage-based
scheduling problem in FMS environment and the

mathematical model for multistage-based sched-

uling problem is then given in Section 3. In
Section 4, we propose the logics and overall im-
plementation procedure of the proposed ahGA in-
cluding chromosome representation of GA and lo-
cal search. In Section 5, numerical experiments
are presented to demonstrate the efficiency of the
proposed ahGA. Finally, some concluding re-

marks are given in Section 6.

2. Multistage-based Scheduling
Problem in FMS Environment

FMS is an enhancement of the cellular
manufacturing paradigm and represents the state-
of-art in the design of manufacturing systems.
Typically, FMS is composed of multiple work-
stations (or machine centers), material handling
systems, and loading-unloading stations, which
may be regarded as a multistage-based scheduling
form. That is, it is a set of the stages which should
perform specified tasks and also consist of differ-
ent several equipments that must process a given
task at each stage, therefore, it can be decomposed
into several stages and the stages are connected
each other. The continuous stages are also consid-
ered simultaneously in order to coordinate be-
tween stages and ensure that the obtained sched-
ule is feasible.

Some assumptions for implementing the
multistage-based scheduling problem are defined
as follow.

There are several tasks to be processed at

each stage, each of which should be treated in
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more than one workstation and also requires the
processing time for the completion of its treatment
at each stage. The environment of task, including
processing and transportation times, is already
known. It is assumed that all tasks are started at
time zero, and are not interrupted by any other
tasks from its start time to its end time. We also
assume that the sequence of each task is not
changed.

Under this type of multistage-based envi-
ronment, locating any feasible route, let alone the
one with the optimal makespan, is usually quite
a complicated task due to the complex inter-
relationships among different stages and the ex-
pensive computational effort that may be involved
in solving complex multistage-based scheduling
problems.

The objective is to locate the optimal makespan
under certain criteria such as minimum time and
minimum cost. Even using notable shortest path
algorithms such as Dijkstra algorithm (Jensen and
Bames, 1980) and Floyd algorithm (Jensen and
Bamnes, 1980), or out-of-kilter (Whatley, 1985),
it is still not easy to deal with a complex multi-
stage-based scheduling problem. Therefore, for
the multistage-based scheduling problem with
multi-objective functions, these conventional tech-
niques may not be used. Although several techni-
ques based on goal programming for multi-ob-
Jective functions have been developed, they can
only illustrate for small multistage-based schedul-
ing problem (Sancho, 1986 ; Shiedovich, 1988).

Using the above-stated basic concept on
multistage-based scheduling problem in FMS en-
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vironment, we suggest a new description of the

problems in the following Section.

2.1 Description of Multistage-based
Scheduling Problem

{Figure 1] shows a simple scheduling prob-
lem with three workstations ( W;, W,, W), three
jobs (i, Jy, J3), and six operations (0y, 05, 03,
04, 05, 0g) in FMS environment. This problem
was already examined in the conventional works
(Holsapple, 1993 ; Yang, 2001). Each job requires
two or three kinds of operations among the six
operations and is run at each workstation. Note
that in this example an operation may be trans-

ferred from one job to any of others.

Jy=19.05,0,] w, || w,
J, =[0,,051 [:>
J, =[05.0,.0,] Wy

[Figure 1] An example of simple scheduling
problem

Detailed processing information for the op-
erations on the three workstations is shown in
<Table 1> This problem consists of three flexible
workstations. Collectively, each workstation can
perform various operations. No single workstation
can perform all jobs, but more than one work-
station may be able to perform a given job. For
instance, workstation W] can perform only oper-
ations 0;, 0,, 04, 05, and og. On the other hand,

operation o, can be performed on W, and W,.
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This is reflected in the different processing times
for the same operation across different workstations.

<Table 2> depicts the relevant data of the
jobs performed along with the precedence require-
ments of the operations that must be scheduled
in this system.

In <Table 2> t; ™Fis the average value of
total processing time for each job J, (k=, 1, 2,
-, K), t{ is the due date for each job J;, and
ti¥ is the sum of the total penalty cost for each
job J,. . For instance, the three quantities (¢ /=
86.5, t2=90.0, and C7F=10) of job .J, in Table
2 are explained as follow.

We first assume that the batch size of each
job is 1 unit. J; requires the three operations o;,
03 and o0, to be performed on that sequence. The

t.i‘l TP

is the sum of the average processing time
for the o,, 05 and o, in this system. From the
information of <Table 1>, we compute this quan-

tity as 23.0+40.0+23.5=86.5 time units.

<Table 1> Processing times of operations

Workstation | 04 0y 03 0y o5 | 0g

4 20 | 20 | - |3 ]|
W, 26 | - | 4 | 41 | 29| -
W, A EINENEE:

Average 230 | 235 | 400 | 380 | 275 | 330

<Table 2> Job-related data for simple scheduling
in each workstation problem

Job No. | Operation sequence t,fTP tkD CkTP
4 0y — 03— 0, 865 | 900 10
4 09—05 510 | 900 1
VA 0g—0,4—0, 94.0 | 950 13

The ¢ is the time limit that a job should
be completely finished within the time from its
starting time to its end time. For the J;, it is 90.
Finally, the last column in <Table 2> contains the
information on the penalty cost per unit time asso-
ciated with each job. We can thus assess a C/7
on the total number of time units by which an
operation is tardy. For the J; (and all other jobs),
this quantity is 10/unit time. In reality, more complex
penalty cost structures could prevail. The remainder
of the <Table 2> is interpreted as a same way.

Using [Figure 1], <Tables 1> and <Tables
2>, we can represent legal schedules as a type
of multistage. For instance, the J; with the fixed
operation sequence (0;— 03— 0, can be ex-
pressed as shown in [Figure 2]. In [Figure 2], each
state is defined as workstations, and each stage
represents the process of transferring an operation
from a workstation to the next one. For the J;,
stage 0 stands for the initial conditions of the mul-
tistage-based scheduling problem in [Figure 1}.
Stages 1, 2 and 3 represent the processing status
of the 0, 0; and o,, respectively. A solid line
connecting two rectangles of two adjacent stages
denotes an action, which indicates that the .J; is
transferred from the left workstation to the right
one and the current operation is processed on the
right workstation. The numbers associated with
the lines mean the processing times when an oper-
ation is processed from a workstation to another.
If an operation cannot be processed on a work-
station, there is no line between the workstations

associated with the operation.
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Stage 0 o, Stage 1
State 1 W
State 2 W,
2

o3 Stage 2 0,

J,= [0, 05,0,]

{Figure 2] A muitistage form for J;

Like the multistage form of the J;, the re-
mainder jobs (J,, J;) are also represented as mul-
tistage forms. [Figure 3} shows the whole process
with the job sequence J,—.J,—J;. There are the
processing times of two or three operations at
each job such as J, (0, 03, 0,) = J, (0,, 05) =
Jy (0g, 04, 0,). For [Figure 3], <Tables 1> and
<Tables 2> are used to demonstrate the realization.
The whole process can be divided into several

stages and states.

3. Mathematical Formulation

In general, scheduling problem in FMS en-
vironment is how to assign the operations of jobs
onto workstations so that certain objectives can
be optimized. Optimizing objectives is to locate
an optimal schedule among all feasible schedules
given objectives such as minimum cost, minimum
time, or maximum quality.

For multistage-based scheduling problem in

4= {011 Oy 02]

h={0, O] : b =10 0, 0]

[Figure 3] Multi-stage form for simple scheduling problem
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FMS environment, many stages and states by in-
creased problem size must be considered though
this problem can be approached by conventional
shortest-path method (Jensen and Barnes, 1980)
or dynamic programming, which will highly af-
fect the efficiency of the procedures implementing
shortest path method or dynamic programming in
getting the optimal solution. This is usually
known as the dimension explosion.

If the multistage-based scheduling problem
has multi-objective functions, it will be more dif-
ficult to solve this problem using the conventional
algorithms mentioned above. Moreover, if the
problem size increase, it will become much more
difficult to deal with even on the case of a sin-
gle-objective function.

In this paper, we develop an efficient ap-
proach to solve the multistage-based scheduling
problem in FMS environment with three objective
functions. Our objective searches the optimal total
penalty out of minimized total flow time in mini-
mized makespan. First, we minimize the make-
span T}, and its mathematical formulation is as

follow :

T,, = maxit;
minimize M ik e}

0

where t;, is the finish time of operation
o; on workstation W; for each job J;. Equation
(1) defines the makespan that the processing time
of last operation o; on workstation W} is finished.

Secondly, we minimize the total flow time

Ty that means the finish time of last operation

0; on workstation W; at each job J as follow :

K
T, = » max {t;
minimize Z:l i {t5} )

Lastly, we minimize the total tardiness pen-
alty P, which defines the sum of penalty costs

for all orders, where the penalty cost for a job
is the multiplication of its unit penalty cost and
the absolute difference between its completion
time and its processing time, given that the former

is larger than the latter.

K
B= Z{ckTP x max {0, max -1
=y -

€)

minimize

The objective functions (1), (2) and (3) are
subjected to the following constraints. Constraint
(4) ensures that none of the precedence con-
straints are violated. Constraint (5) means non-

negative integer value.
thie T Phji < tijes vV, € succ, C))
thtin =0, Visj,k )
where ¢}, is the end time of operation o),
on workstation W; for each job Ji, P, is the

processing time of operation 0, on workstation
W; for each job Ji, succy, is a set of successors
of operation h(:=1,2, ---, h, ---, I), and tgjk is
the start time of operation o; on workstation W,
for each job J,,

4. Adaptive Hybrid Genetic Algorithm
Approach

Locating an optimal schedule under the
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complete enumeration of all possible job se-
quences is normally impractical for scheduling
purpose unless the number of jobs is very small,
This is mainly because that the number of se-
quences of a job k is k!.

Suppose k= 10, for example, we have 10!
= 3,628,800, which means that a schedule gen-
eration algorithm needs to be invoked over three
and a half million times if all possible job se-
quences are examined. If a much larger number
of jobs is considered like k=40, much greater
computation effort is required (40! = 8.16x10"
possible sequences) (Yang, 2001). Therefore, it
may be impractical for the conventional methods
such as shortest-path method ([Jensen and Barnes,
1980]) or dynamic programming to effectively
solve these types of complicated job sequences.
Therefore, other techniques for job sequence gen-
eration are required, such as GA-based approach.

With GA-based approach, we can generate

all possible schedules with complete job se-

quence, and thus avoid unnecessary computa-
tional efforts for the incomplete job sequences
generated. Secondly, the evaluation of a job se-
quence using GA approach is based on the actual
performance of the sequence instead of any esti-
mate as with tree search methods (Gen and
Cheng, 2000), which makes the quality of evalua-
tion using GA approach being better.

For much more improvement of the search
ability of GA approach to the optimal solution,
an adaptive scheme for GA parameters and a local
search technique can be incorporated into GA
loop, respectively.

With these schemes, we develop the ahGA
approach to effectively solve the mmitistage-based
scheduling problem using the mathematical for-
mulation shown in Section 3. First, a new gene
representation method and genetic operators of
GA to represent the multistage-based scheduling
problem are used. Secondly a local search and an

adaptive scheme are proposed, respectively.

3 | 2 | state permutation

[Figure 4] An example of state permutation encoding
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4.1 Gene Representation

For the multistage-based scheduling prob-
lem shown in [Figure 3], the alternative states at
each stage can be expressed by a series of integers
to indicate the state. If a state for an operation
is chosen at one stage, its corresponding integer
can be assigned where the integer is within the
number of possible states at that stage. Therefore,
the multistage-based scheduling problem can be
concisely encoded into a state permutation format
by concatenating all the set states of stages.

This state permutation encoding has 1-to-1
mapping for the problem and easy to encode and
evaluate. Several advantages using state permuta-
tion encoding in multistage-based problems were
mentioned in the ref (Gen and Cheng, 2000).

As to the initial population of GA for multi-
stage-based scheduling problem, each individual
is represented as a permutation with n-1 integers
where the integers are generated randomly with
the number of all possible states in the corre-
sponding stage. [Figure 4] shows an example of
state permutation encoding using the simple
scheduling problem in [Figure 3].

In [Figure 4], the bold lines mean that the
operations on the corresponding workstations are
processed. This can be presented as a series of state
permutation {2, 2, 3)—>J,(1, 2)—>J(3,3,2) as
shown in [Figure 4]. Therefore, we can adapt this
encoding scheme for the gene representation of GA.
Using the state permutation encoding, a feasible
schedule can be located. Let (J, o, (W, : t;;, £5,)

denotes that operation i of job k is scheduled on

workstation j from its start time ¢, to its end time
t;y. Finally the following feasible schedule can

be produced.

8y =83y = Spp > Sy =< Sy =S —> L >
=< (4, 0,)/ (W, :0,26), (J;, 03)/
(W, :26,28), {J;, 0,)/ (W, : 68,95)
— (&, 0,)/ (W; :0,20), (J, 05)/ (W, : 68,97) (6)
- (Jg: 06)/( % :0129)7 («]37 04)/
(W, :29,63), (U, 0,)/ (W : 97,123) >

The schedule S of the equation (6) means
that the operation 1 of job 1 can be processed
on workstation 2 from its starting time O to its
ending time 26, and then the operation 3 of job
1 is processed on workstation 2 from 26 to 68.
The remainders for job 2 and job 3 are interpreted
as a same way. Using equation (5), we can con-
firm that the 7%, 7, and Py are 123, 315(=
95+97+123), and 491(=(95—90) x 10+(97—
90) x 11+ (123 —95) x 13), respectively.

4.2 Combination Crossover

The combinatlion crossover (CC) operator
is used here, which simply selects one position
(job) at random for a pair of parents and then
combines their contents (jobs). The CC procedure

is shown as follow :

procedure 1: CC operator

begin

i< 0;
while (i = pop_size X rates of crossover (P,)) do
select two parents (individuals) randomly in

current population ;
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randomly pick up a job (j;) in parent 1 and
a different job (j;) in parent 2 ;

place the selected two jobs and the first re-
mainder job (j;) of parent 1 in offspring 1;

place the unselected jobs (j; and j,) in parent
2 and the job (j3) of parent 1 in offspring 2 ;
i & j+1;
end

end

[Figure 5] shows an example of the CC op-
erator using the individuals resulting from the
state permutation encoding of {Figure 4]. For the
selected two parents from population in [Figure 5],
the job j, of parent 1 and job j; of parent 2 are
randomly selected, and then two new offspring

are generated, after performing the CC operator.

o Tk T B T
parentl [ 151311123 ]3]2
Ji

offspring 1

offspring 2

b e B
21213]112 3—(3|ﬂ

[Figure 5] An example of CC operator

4.3 Swap Mutation

The swap mutation (SM) operator is used
here, which simply selects two positions (jobs) at
random and swaps their contents as shown in
(Figure 6]

72 FRXSHBAIALSE=RX] H13A M35 20074 0

[Figure 6] An example of SM operator

The SM procedure is shown as follow :

procedure 2: SM operator
begin
i< 0
while (i =pop _size % rate of crossover (P,,)) do
select a individual randomly ;
pick up two jobs randomly ;
exchange their positions ;
i< i+l
end

end

4.4 Combining Technique by Local Search

Local search technique seeks improved sol-

- utions by searching in the neighborhood of an in-

cumbent solution (Ishibuch and Murata, 1998).
The implementation of local search technique re-
quires an initial incumbent solution, the definition
of a neighborhood for an incumbent solution, and a
method for choosing the next incumbent solution.

The idea locating an improved solution by
a small change can be used in mutation operator.
Observing the SM operator, the individual gen-
erated by pair-wise interchange can be viewed as

a neighbor of the original individual. The neigh-
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borhood of an individual is then defined as a set
of individuals generated by such pair-wise
interchange. For a pair of genes, one is called as
the pivot which is fixed for a given neighborhood
and the others are selected randomly as shown
in [Figure 7].

For a given neighborhood, an individual is
called a local optimum if it is better than any other
individuals with respect to their fitness values.
The size of a neighborhood affects the quality of
the local optimum.

There is a clear trade-off between small and
large neighborhoods: if the number of neighbors
is larger, the probability of locating a good neigh-
bor may be higher, but its search takes more time.
The procedure of local search technique is as fol-

low :

procedure 3 : local search technique
begin
i< 1;
let P(parent) be current incumbent individual ;
select a pivot gene randomly in the neighbor-
hood of P ;
while (i <specified number) do
pick up the gene ;
evaluate the neighbors toward both sides
until the left and right limits of the gene ;
let a neighbor (offspring) be current in-
cumbent if it is better than the previous
one ;
i< itl;
end

save the current incumbent ;

end

4.5 Adaptive Scheme for GA Parameters

Basic logic of adaptive scheme is to en-
hance the performance of the search by adaptively
regulating GA parameters during genetic search

process, and its implementation is as follow :

mutated gene

Jzﬂ

parent individujzl 4
— i

neighbor individuals

[Figure 7] Incumbent individuals and
its neighborhood

Whenever a new offspring is added to the
population, a pointer is established for the genetic
operator that generates the offspring. A check is
then made to determine if the fitness of the off-
spring is better or worse than its parents. The per-
centage of improvement or degradation is re-
corded, and this record is reserved for later adjust-
ments of the occurrence rates of GA operators.

In this paper, we use two operators of GA,
CC and SM. That is, the occurrence rates of the
two operators are adaptively regulated by adaptive
scheme during the genetic search process. For this
logic, we use the concept of Mak et al. (2000).
They employed the fitness values of parent and

offspring at each generation in order to construct
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adaptive crossover and mutation operators. By
this concept, we adapt the two operators, the CC
and SM proposed in Sections 4.2 and 4.3. The
adapting strategy is as follow :

This scheme increases the occurrence rates
of the two operators, if it consistently produces
a better offspring during genetic search process;
however, it also reduces the occurrence rates of
the operators, if it produces a poorer offspring.
This is based on the fact that it encourages the
well-performing operators to produce more off-
spring, while also reducing the chance for the
poorly performing operators to destroy the poten-
tial individuals during genetic search process. The
detailed procedure for minimization problem is as

follows :

procedure 4 : Regulation of the rates of CC and
SM operators

begin
if (fpaTJile(t)/foffjize(t))_1 201 t.hel'l
pc(t+1)=pc(t) + 0.01
Pyt +1)=p,(¢) + 0.005;
if (fPﬂTJize(t)/fojj_sile(t))_1 < 0.1 then
pct+D)=p.(t) - 0.01
Pyt +1)=p, () - 0.005
if =01< (fpﬂfjize(t)/foff__qize(t))_l <0.1 then
Pc(t+1)=p.(?) , Pu(t+D)=p, () ;
end

end

where par_size and off size are the parent

size and offspring size satisfying constraints,

74 SHEASHEA|AH S =RX| H131 X3z 20074 9¥

respectively. m(t) and m(t) are re-
spectively the average fitness values of parents
and offspring at generation ¢. p.(t)and p,(t) are
the rates of CC and SM operators at generation

t rtespectively. In the cases of ( Foar_size )/

Forporne®) =12 0.120d  (Fror )/ Fopy ine(®))
—1 <—0.1, the adjusted rates should not exceed
the range from 0.0 to 1.0 for p(t+1) and
pp(t+1). The above-stated procedure is eval-
uated in all generations during genetic search
process, and the occurrence rates of CC and SM
operators are adaptively regulated according to

the result of the procedure.

4.6 Overall Procedure of the ahGA

By the logics and schemes suggested from
Section 4.1 to 4.4, the overall procedure of the
ahGA is proposed in the following steps.

Step 1 : Initialization
Randomly generate an initial set of m in-
dividuals by state permutation encoding.
Step 2 : Initial evaluation
Evaluate all individuals and calculate their
fitness.
Step 3 : Selection
Elitist selection strategy (Gen and Cheng,
1997) is adapted.
Step 4 : CC operator (procedure 1)
Apply CC operator to the population gen-
erated by Steps 1 and 2.
Step 5 : SM operator (procedure 2)
Apply SM operator to the population result-
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ing from the CC operator.

Step 6 : Local search technique (procedure 3)
Apply local search technique to the pop-
ulation resulting from the SM operator.

Step 7 : Evaluation
The fitness evaluation of offspring is im-
plemented by the three objective functions
suggested in equations (1), (2), and (3).
Select the optimal total penalty out of mini-
mized total flow time in minimized make-
span. The optimal schedules may be revised
during genetic search process.

Step 8 ! Termination condition
If one of the individuals achieves the
pre-defined maximum fitness, then stop and
return the best individual. Otherwise, gen-
erate a new selection set.

Step 9 : Adaptive regulation of GA parameters
(procedure 4). Therefore, the rates in CC
and SM operations are regulated by the
adapting strategy. Go to Step 3.

S. Numerical Experiment

In numerical experiment, we use a simple
size of scheduling problem and much more large-
scaled scheduling problem in FMS environment.
These two problems are expressed by multi-
stage-based forms and are then solved by the pro-
cedure of the ahGA in Section 4. For ex-
perimental comparison under a same condition,
we set the parameters of the ahGA as follows:

maximum generation number is 1,000, Population

size is 20, Initial p, is 0.3, Initial p,, is 0.3.

The value of p, and p,, are adaptively regu-
lated during genetic search process by the adap-
tive scheme used in the ahGA. Altogether, 30
iterations are executed to eliminate the random-
ness of the search.

The procedure of the ahGA is programmed
and implemented in JAVA language under
IBM-PC Pentium 1.4 GHz computer with 512MB
RAM.

5.1 Example 1

<Table 3> shows the processing times of
each operation on workstations as a simple size
of scheduling problem in FMS environment. This
problem consists of five workstations denoted as
Wi,- -+, W;. Collectively, these workstations can
perform five operations o,,---,05. The required op-
erations for each job with the precedence require-
ments are listed in <Table 4>.

Using <Tables 3> and <Tables 4>, the
ahGA was implemented and its optimal schedule
is shown in <Table 5>, and the optimal schedule
can be also represented as a Gantt chart form in
[Figure 8].

To prove the efficiency of the ahGA, we
also implemented the three conventional algo-
rithms (shortest average processing time tg,p, dis-
crete dynamic programming (DDP), GA-based
discrete dynamic programming (GA-DDP)) (Yang,
2001) and the GA without the local search and
adaptive scheme in the ahGA into the same sched-
uling problem shown in <Tables 3> and <Tables
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4>. The computational results using the ahGA,
GA and the three conventional algorithms are list-
ed in <Table 5>.

<Table 3> Processing times of operations in each
workstation for Example 1

. Operations
Workstations

Oy ] O3 04 O
4 6 8 - 10 -
W, - 7 12 - 8
W, 9 - - 5 10
w, - 9 7 8 -
W 7 - 8 - 6

Average 733 | 800 [ 900 | 767 | 800

<Table 4> Job information for Example 1

Job No. | Required operations t,fTP tf c,fp
A 0y 0,— 0305 3267 | 50 10
J 0,—0,~04 2433 | 50 10
J 0403 1667 | 50 10
J, 090,030, 3200 | 50 10
ya 0470305 2467 | 50 10
WA 0,0, 1567 | 55 10
J, 05—0,—0, 2333 | 55 10
VA 0,705—05—0, 3233 | 55 10
A 0,030, 2467 | 55 10
Jo 0,05 1533 | 55 10

Schedue: J1 = Jy — Jg=> Jig = J1 == s = Jg— B = S

[Figure 8] Gantt chart using ahGA
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{Figure 9] Gantt chart using tg,p algorithm

<Table 5> The results using ahGA, GA and
three conventional algorithms

teqp | DDP | GA-DDP | GA | Proposed ahGA
Tyl 68 | 59 51 50 46
TF 368 | 365 359 357 356

Using the ahGA, [Figure 8] shows the
Gantt chart which is scheduled a profile <J, —
YAl e i Al Il el Il
J,> with the best makespan (7,=46) and T
=356 (=28+37+25+21+46+46+40+22+
46+45). Using tg, p algorithm, [Figure 9] shows
Gantt chart with Ty, =68 and 7 =368 (=25+
25+11+43+37+38+28+50+68+43).

In <Table 5>, the Thand T of the GA
and ahGA outperforms those of tg,p, DDP and
GA-DDP.

In comparison between the GA and ahGA,
the latter both with the local search and adaptive
scheme is slightly better than the former without
any local search and adaptive scheme, which

mean that the local search and adaptive scheme
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used in the ahGA are well controlling the search
to the optimal solution. This also implies that the
ahGA is well regulating the trade-off between ex-
ploration and exploitation during genetic search
process rather than the GA does. For proving the
search ability of the adaptive scheme used in the
ahGA, we compared the behaviors of the con-
vergence process of the makespan in the GA and
ahGA during their genetic search processes. [Figure
10] shows the behaviors in the GA and ahGA.
The behaviors of the ahGA have lower makespan
than those of the GA, which means that the adap-
tive scheme and the local search technique used
in the ahGA are well controlling the search rather
than the GA does.

5.2 Example 2

For more large-scaled scheduling problem,
we consider various environments, <Table 6>
shows the processing times for various operations
on 15 workstations as well as the relevant oper-
ation-related data. Detailed job information
(required operation sequence, tf 77, tP and ¢ty
for each job on 5, 10, and 15 workstations are
appeared in Appendix A. The ahGA was im-
plemented using the information of <Table 6> and
Appendix A, and its optimal schedule for the 10
jobs and 5 workstations is shown in [Figure 11].

In [Figure 11], the job sequence for optimal

schedule is as follow :
F B 5 J= J= I I = J= dy - (7)

The values of multi-objectives are 7, =

. prosessing,

[Figure 10] Behaviors of the makespans in GA
and ahGA

40, T,=322 (19+30+31+27+26+37+34+
38+40+40=322) and P,=0. To compare the
performance between the GA and ahGA, we test-
ed the two algorithms under various environments
of GA parameters. <Table 7> shows the optimal
results of T, Ty and Py, after 30 times running

<Table 6> Processing times of operation in each
workstation for Example 2

Worksta— Operations
tion |0, |0y |05 |04] 05| 06|07 0510
W -1613|-1a|-]3]-
W, 4 |2 |-1-}|6]|~]15]-138
W, - -1716|-13|-]14]-
W, 3131-{-15|-13]|]-14
W, |-|-|9|5]|-]|5]-138]-
W 4 13| -12|4(-]16]-15
W, |- |-16|-|-]14]l-]5]-
W 314 |-14)-]12|-}1-15
Wy - |- 18{5|3|-]14]6]-
We |515(-|-121]5]-]-168
W -|15|-14]|-]15]|-]3]-
We [3|-19}-|6]~-|5]-1|4
W |- |4 |-|5)-|3]|-]|4}|-
W, -6l -[5-18]-
Ws [312(-16|3]4]-1]5

Average |3.78|3.50|7.29 |4.44 |4.25|3.89]4.33|4.13|4.25
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&Gaﬂ(l Chart

5 12 06 31
 Schedulel Js = J7 = Jy— i — Jo= Js = Ja= Jio = Je—

[Figure 11] Gantt chart for 10 jobs and 5 workstations in ahGA

for each GA parameter setting in the GA and is better than that of the GA in all the compar-
ahGA. isons, which implies that using the local search
In <Table 7>, the performance of the ahGA technique and adaptive schemes in the ahGA is

<Table 7> Result of Example 2

7 W | Test No. n;::(\_ F:i)zpe_ o C;:: & o Propos;: ahGA 7
1 500 20 44 613 230 42 597 150
10 5 2 1000 25 44 611 210 41 607 180
3 1500 30 43 609 190 40 603 160
1 1000 40 48 679 320 45 968 20
20 10 2 1500 45 43 669 280 44 945 240
3 2000 50 47 667 240 43 936 200
1 1500 45 62 1620 380 58 1559 320
30 15 2 2000 50 61 1579 350 57 1538 310
3 2500 55 60 1554 340 56 1487 290
1 2000 55 44 613 230 42 597 150
40 15 2 3000 60 44 611 210 4 607 180
3 4000 65 43 609 190 40 603 160
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a better choice when we want to improve the per-
formance of GA under the complicated schedul-

ing problems of FMS environment.

6. Conclusion

In this paper, we have developed a new
adaptive hybrid genetic algorithm (ahGA) for ef-
fectively solving the multistage-based scheduling
problems in FMS environment. The proposed
ahGA consists of the procedures of a state permu-
tation encoding, two GA operatiors (combination
crossover and swap mutation operators), local
search technique and adaptive scheme for GA
parameters. For various comparisons with the pro-
posed ahGA, three conventional algorithms and
the GA without the local search technique and
adaptive scheme in the ahGA have been tested
in numerical experiments.

Based on the various analyses, we can con-
clude that our proposed ahGA is more efficient
and more flexible in locating optimal solution
than the other competing algorithms.
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<Appendix A. Job information for Example 2>

. . tkATP » »
No. of Jobs Required operations W, 107, W, t, t,
4 0~ 0,—>0,-0 20.00 18.77 19.48 35 20
& 0,—> 00 16.83 15.70 15.87 35 20
I 0,~0,—0,—~ 0 1850 1877 19.01 35 20
4 0, —0— G 1467 1540 15.20 35 20
% 0,—0, -0 =0, 20.00 1877 19.48 35 20
J 0,=20,-20,-0,-0, 20.17 20.17 2022 40 20
k G—>0—-0,—~0 13.83 1543 15.30 40 20
% 0—-0,—-0,-0 16.67 1557 15.97 40 20
Jy 0= 000 16.00 15.90 15.86 40 20
o 0,—0,—-0,—-0 -0, 24.00 2277 2326 40 20
I 0, 0, =0, ~0 1450 15.60 15.96 40 15
i 0- 0~ 0,0 19.33 18.60 18.82 40 15
i3 0,20,— 0;,—0, -0 25.00 23.80 24.12 40 15
o 0,—0,—-0,—0 1850 18.77 19.01 40 15
s 0, —~0, >0~ 0, 20.17 19.90 20.00 40 15
s 0,-0,-0,— 0 18.50 18.77 19.01 45 15
Jiz 0;— 0,—~ G, 13.00 13.10 1283 45 15
g 0—-0,—-0,—-0 1933 18.60 18.82 45 15
Jis 0,— 0,— 0, 14,50 1477 15.23 45 15
Jg 0, —0,— O 12.83 12.20 12.16 45 15
Iy 0-0,-0,—-0 20.00 18.77 19.48 50 10
o 00— 0, 0, 13.83 14.60 1457 50 10
o3 0,—0,— 0 13.00 12.60 12.28 50 10
Dy 0,—0;,— 0,—0, 19.33 18.60 18.82 50 10
s 0,—0, -0 1383 15.10 15.12 50 10
g 0;,— 0 — 0, 12.00 11.40 1153 55 10
oy 00—~ 0,— 0 20.83 1957 20.11 55 10
g 0, —0,— O 15.33 15.70 15.40 55 10
hg 0,—~0,—-0,— 06 16.67 1557 15.97 55 10
o 0,— 0,—0,~0; 17.67 16.77 16.72 55 10
A 0~ O, — 0, 12,00 11.40 11.53 60 5
I 0= 0, >0~ 0 2150 19.20 19.87 60 5
k3 0;— 0 — G 16.83 1520 15.32 60 5
k4 0,—~0,-0,-0, 1850 1927 19.56 60 5
s 0~ 0,—0 16.83 15.20 15.32 60 5
i 0,—0,— G, —~0, 18.00 19.37 19.48 65 5
7 G~ 0,— 0,0 19.33 19.10 19.37 65 5
g 0,-0,—~ 0 13.83 14.60 1457 65 5
e 0,—0,—->0,—0 16.67 15.57 15.97 65 5
Jio 0,—=0,— G~ 0, 18.67 18.80 19.17 65 5
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