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An Al Approach with Tabu Search to Solve
Multi-level Knapsack Problems: Using Cycle
Detection, Short-term and Long-term Memory*

IlIsang Ko**

Abstract

An Al approach with tabu search is designed to solve multi-level knapsack problems, The approach
performs intelligent actions with memories of historic data and learning effect. These actions are developed
not only by observing the attributes of the optimal solution, the solution space, and its corresponding path
to the optimal, but also by applying human intelligence, experience, and intuition with respect to the search
strategies. The approach intensifies, or diversifies the search process appropriately in time and space. In
order to create a good neighborhood structure, this approach uses two powerful choice rules that emphasize
the impact of candidate variables on the current solution with respect to their profit contribution, “Pseudo
moves,” similar to “aspirations,” support these choice rules during the evaluation process. For the purpose of
visiting as many relevant points as possible, strategic oscillation between feasible and infeasible solutions
around the boundary is applied. To avoid redundant moves, short-term (tabu-lists), intermediate-term
(cycle-detection), and long-term (recording frequency and significant solutions for diversification) memories
are used. Test results show that among the 45 generated problems (these problems pose significant or

insurmountable challenges to exact methods) the approach produces the optimal solutions in 39 cases.

1. Introduction

Suppose we have dozens of objects that have different costs, weights, volumes, and profits, and a

knapsack that has limits on total cost, total weight, and total volume in which to pack them. How
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can we put these objects in the knapsack in order to maximize the overall sum of their individual
profits? This question is a typical multi-level knapsack problem, which is known to be NP-complete
[4, 10]. Previously developed algorithms have used certain combinations of the simplex method, the
branch and bound method, binary search, the compiement concept, heuristic selection rules, lagrange
relaxation, duality, and surrogate constraints. They frequently use ordering of variables according to
the unit profit (Cy/Aj), or some other sort of ratio.

A branch and bound algorithm that uses the simplex method and binary search produces an exact
optimal solution, but it takes tremendous amounts of computing resources to find that solution [15].
This exact method often faces a combinational explosion. In contrast, heuristic algorithms find a good
solution very quickly, but do not guarantee the optimality of the solution. Because of their economical
computation time, the later algorithms are more practical for real problems. One of the most classical
approaches to the multi-level knapsack problem is the gradient method [20]. Because it moves from
infeasible solutions toward a feasible solution as the dual simplex method does, this method is also
called “the dual effective gradient method.” In contrast, “the primal effective gradient method” [21]
sets all variables free with value zero, calculates all gradients of the suggested function in terms of
the free variables, selects one variable, and sets its value to one in the current solution until the
solution reaches infeasibility, The two approaches are quite simple with respect to their logic and

computation time, and both produce good solutions that are very close to the optimal solutions.
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Consequently, they have been used to create an initial solution in some recent algorithms [13].

Some of the prior methods have their own weakness. because of their underlying assumptions,
when working on a certain problem class. For example, in the reduction method [15], some of the
variables are fixed to have zero or one as their values, and the remaining free variables are used to
create two branches: one branch with one as its value, and the other branch with zero as its value.
In an ordered variable list, some variables at both extremes have a tendency to have one (or zero in
the other extreme) as their value in the optimal solution. A similar concept of reduction method has
recently been applied to reducing constraints in solving multi-level knapsack problems [5].

“Strongly determined variables” [8] are very similar to the reduction method. One weakness is that
sometimes these methods cannot reach the optimal solution when a fixed variable has a wrong value,
for example, one instead of zero or zero instead of one as its value, In other words, they can easily
be trapped at local optima that may be far from the global optimum. This situation usually occurs in
a strongly-correlated problem. In performance comparisons, researchers have classified knapsack
problems into three categories: random, weakly-correlated, and strongly-correlated [1]. The
correlation between the profit (C;) and resource consumptions (Aj;) of each variable is the criterion
for this classification. But no algorithm outperforms the others in all three categories of problems. In
particular, most algorithms have difficulty reaching the optimal solution in a strongly-correlated
problem. This is unfortunate since this type of problem represents the most realistic case.

Up to now, most heuristic algorithms lack a long-run planning. They assume a short-sighted plan
and a constant decision environment, They are too static, and lack adoptability during the search
process. They do not have any scheme to incorporate information about the dynamically changing
space during the search process. Intensification and diversification, and their dynamic structural
constitution provide a fresh approach compared to the current algorithms. Utilizing the short-term,
intermediate-term, and long-term memories, and deriving a learning mechanism from them are most
promising.

In this study, we developed an Al Approach with tabu search to solve multi-level knapsack
problems. Figure I describes several concepts of intelligence that are utilized in this approach. The
concepts of choice rules ADD and DEL, pseudo moves SAVE and ASPIRE, tabu lists, strategic
oscillation, cycle detection, and the diversification process are explained later in their corresponding

sections,
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2. A Mathematical Definition of the Multi-level Knapsack
Problem

A multi-level knapsack problem is the knapsack problem extended to have multiple constraints. It

is defined as follows:

MAX Z =CX
Subject to: AX (= B
X;=0or1 for al j

Where C = [Cy Ca Cs, ... Cul
[Xy, X2 X3, oo Xad
A, A, A, o Al

P
won

Aml. Am2,- AmB...., Amn
B = [Bi, By B, ... Bul
All C;, Aj;, Bi's are positive.

This problem has been well-used to model project selection problems [18], capital budgeting [17],
resource allocation problems, and so on. In this problem, multiple constraints, reflecting the various
resource consumptions of each variable, make the solution algorithms more complicated than in a
knapsack problem with only one constraint. Observations about the attributes of the optimal solution,
its solution space, and its corresponding solution path are crucial to developing intelligent actions of
an ideal approach. These attributes are described as follows:

1. The optimal solution has the largest objective value within the given resource capacities.

2. The optimal solution has resource consumptions that are feasible and very close to the boundary
between feasible and infeasible solutions. But the optimal solution may not be the solution
closest to the boundary.

3. The optimal solution has many neighbors. These neighbors are determined by choice rules for
the next moves. Consequently, different choice rules create different neighborhood structures.

4, The optimal solution can be reached by many possible paths. These paths are determined by
the solution space and choice rules. In other words, different solution spaces and different choice
rules are expected to create different solution paths.

5. There may be several optimal solutions that have the same objective value, but may have
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different resource consumptions. The number of variables in the optimal solutions can vary.
Because of the attributes 2 and 4, the integration of strategic oscillation and pseudo moves SAVE

and ASPIRE makes it possible to find optimal or near optimal solutions in a few computation time,

3. Creating an Initial Feasible Solution

Creating a good initial solution is very important in order to reduce the amount of computation
time needed to reach the optimal solution. The variables which produce high unit-profits in terms of
their resource consumptions are attractive enough to be included in an initial solution. For example,
in a knapsack problem, unit-profits (Cj /A)) are employed to constitute an initial solution in several
heuristic approaches [2, 14]. In a multi-level knapsack problem, unit-profits in terms of surrogates of
resource consumptions of individual variables are also used to create an initial feasible solution (16].

In order to create an initial feasible solution, our approach uses the maximum resource consumption
of variables normalized by profits and capacities [MAX { Ay /7 (Cj * B)}] (this value will be called
the maximum normalized resource consumption). This value indicates the maximum relative resource
consumption of each variable in order to create one unit of profit. The variables are arranged in
increasing order based on the maximum normalized resource consumption ( MIN [ var | MAX { A;
/ (Cj * Bi)}1). The variables on the ordered list are introduced one at a time into the solution until
the introduction of the next variable would produce an infeasible solution. An example of creating an

initial feasible solution is in Figure 2.

4. Intensification

An intensification strategy attempts to find a better solution in a restricted region, In a multi-level
knapsack problem, this strategy can be performed intelligently by two choice rules ADD and DEL,
strategic oscillation, tabu-lists, pseude moves SAVE and ASPIRE, and cycle detection. These
intelligent actions are activating appropriately in time and space according to the current space and

historic information. The details of an intensification process is in Figure 3.
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An Example
MAX 20x1 + 18x2+ 15x3+ 14x4+ 12xs+ 9xX6 + 7X7 + 5x8+ 3x9 + 2X10
S.T. 15x1+ 16x2+ 12x3+ 12x4 + 10x5 + 10x6 + 8x7 + 5x8 + 4x9 + 3x10 <= 45
22x1 + 21x2 + 16X3 + 14x4 + 15Xs+  Tx6 + 5%7 + 2xs + 4X9 + 4x10 <= 50
18x1 + 20x2 + 15x3 + 10x4+ 9xs+ 8xe+ 2X7 + 6x8 + 2X9 + 5x10 <= 40
All Xj=0orl
Variables X1 ) ] X3 X4 X5
Agj/ (B1*Cj) 15/(45%20)  16/(45*18)  12/(45%15) 12/(45*14) 10/(45*12)
=0.0166 =0.0197 =0.0177 =0.0190 =0.0185
Azj ! (B2 *Cj) 22/(50%20)  21/(50%18) 16/(50*15) 14/(50*14) 15/(50*12)
=0.0220 =0.0233 =0.0213 =0.0200 =0.0250
A3/ (B3 *Cj) 18/(40%20)  20/(40%19)  15/(40*15) 10/(40*14)  9/(40*12)
=0.0225 =0.0277 =0.0250 =0.0178 =0.0187
MNRC*? 0.0225 0.0277 0.0250 0.020 0.0250
Priority 2 7 4 1 5
Variables X6 X7 X8 X9 X10
Aisj/ (B1*Cj) 10/(45*9) 8/(45*7) 5/(45*5) 4/(45%3) 3/(45%2)
=0.0246 =0.0253 =0.0222 =0.0296 =0.0333
Azj / (B2 *Cj) T/(50*9) 5/(50*7) 2/(50*5) 4/(50*3) 4/(50*2)
=0.0155 =0.0142 = 0.0080 =0.0266 = 0.0400
A3j/ (B3 *Cj) 8/(40*9) 2/(40*7) 6/(40*6) 2/(40*3) 5/(40*2)
=0.0222 =0.0253 =0.0300 =0.0166 =0.0625
MNRC* 0.0246 0.0253 0.0300 0.0296 0.0625
Priority 3 6 9 8 10

MNRC* = Maximum Normalized Resource Consumption

The created initial solution = (x4 x1 x6), The objective value = 43

4.1 Choice rules ADD and DEL

Figure 2. Creating an initial solution

Intelligent choice rules have an important role in creating a good neighborhood structure that may

lead to the optimal solution. Some classical approaches for creating such a structure use unit-profits

and surrogates of normalized resource consumptions (by capacities) of candidate variables. Glover's

[6]. Geoffrion's [5] and Petersen’s [17] approaches are typical examples. Kochenberger, McCarl, and

Wyman’s [12] approach uses unit-profits of candidate variables and surrogates of their resource

consumptions in terms of slack resources (resource consumptions are normalized by slack resources).

These approaches usually catch the best candidate variable. But, in some cases, they can not select

the best move because they do not consider the total profit and total resource consumptions of the

current solution. The best candidate variable for the next move can be determined not only from the

merit of the variable, but also from the relationship between the variable and the current solution.
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Figure 3. The intensification process

It is better to reflect the state of the current solution in the choice rules for adding or deleting a
variable. In evaluating the next potential moves, measures are desirable to reflect at least some part
of the change of the objective value [ a(CX’- CX’’) ] and some part of the change of the current
solution’s resource consumption [ b(AX'- AX"") ] where X’ is the next solution, X'’ is the current
solution, and a and b are greater than zero but less than one [6]. Two such measures are choice

rule ADD for evaluating variables to be added. and choice rule DEL for evaluating variables to be

Choice rule ADD calculates the ratio of the total profit to the maximum normalized

details of the two rules are given in Figure 4.

resource consumption of the resulting current solution by adding a candidate variable. On the other
hand, choice rule DEL selects a leaving variable that maximizes the utility of the total resource

consumption of the resulting current solution by calculating its similar proxy total unit profit. The
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[STEP 1. Get the current objective vatue (C-OBlJ) and\
the current resource consumption list (C-RES) based
on the current solution set (ISET);

C-0OBJ = SUM[CJ(ISET)] = SUM[Cj(x=1}]
C-RES(i) = {SUM[A(ISET)]} = {SUM[Aij(x=1)]}.

MAX-OUP =0
k MAX-VAR =()

Define the next local variables;

Choice rule ADD v

v Choice rule DEL

(" STEP 2. If the free variable set (OSET) is
empty, then get the variable in MAX-VAR
for the next addition and stop.

Otherwise, continue,

STEP 2. If the current solution set (ISET) is
empty, then get the variable in MAX-VAR
for the next addition and stop.

Otherwise, continue.

~

A Y

/STEP 3. Select one variable (VAR)
from the free variable set (OSET)
and get the profit (Cj) of the variable.
Get all resource consumptions (Aij)
of the variable and their corresponding
resource capacities { CAP()}.
Calculate the next two terms,
NEW-C-OBJ = C-OBJ + Cj(VAR)
NEW-C-RES() =

[ C-RES() + Aij(VAR)] / CAP().
Get the largest resource consumption
ratio among NEW-C-RES(i) and
calculate the proxy total unit profit of
the resulting current solution;
NEW-OUP =

NEW-C-OBJ/ MAX[NEW-C—RES(iy

mﬁp 3. Select one variable (VAR) \

from the current solution set (ISET)
and get the profit (Cj) of the variable.
Get all resource consumptions (Aij)
of the variable and their corresponding
resource capacities { CAP(i)}.
Calculate the next two terms,
NEW-C-OBJ = C-OBJ - Cj(VAR)
NEW-C-RES(i) =

[ C-RES(i) - Aij(VAR)] / CAP(G).
Get the largest resource consumption
ratio among NEW-C-RES(i) and
calculate the proxy total unit profit of
the resulting current solution;
NEW-OUP =

\NEW—C-OBJ IMAX [NEW-C—RES(i)y

STEP 4. If NEW-OUP is greater than )
MAX-OUP, then update the following;
MAX-OUP = NEW-OUP

MAX-VAR = VAR.

Remove the selected variable (VAR)
from the free variable set (OSET)

and go to Step 2. )

" STEP 4. If NEW-OUP is greater than
MAX-OUP, then update the following;
MAX-0UP = NEW-OUP
MAX-VAR = VAR.

Remove the selected variable (VAR)
from the current solution set (ISET)
and go to Step 2.

A

Figure 4. The choice rule ADD and DEL

4.2 Strategic oscillation with feasibility

Strategic oscillation around the boundary between feasible and infeasible solutions is a powerful
scheme that allows the search to visit as many relevant points as possible. The general assumption is
that the optimal solution is a point that is very close to the boundary, but may not be the closest. If

the current solution is feasible, the process adds variables, one by one, until the solution violates its
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After reaching an infeasible solution from a feasible one (or vice versa), the next move
changes its direction from addition to delection until N reaches the pre-assigned number.

|
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Figure 5. Strategic Oscillation

feasibility, attempting to move close to the boundary. If the current solution is infeasible, the process
deletes variables sequentially until the current solution becomes feasible, and visits a relevant point

very close to the boundary that may be optimal. Figure 5 shows an example of strategic oscillation.

4.3 The length of tabu-lists

Tabu-lists (tabu-add-list and tabu-del-list) hold a few variables that have recently been added to
or deleted from the recent solutions. They force the effect of those changes on the current solution
and its objective value to endure for the next several iterations, Tabu-lists are called “the short-term
memory.” and make the previous changes last for the next several moves.,

A careful configuration of strategic oscillation and tabu lists often provides a substantial improve-
ment in the quality of the solution. For example, if we add one variable and delete another variable
three times sequentially, and if the length of the tabu-list for those variables is three, this has the
same effect as adding three variables together and deleting three other variables at the same time,
In addition, the effect of adding two variables and deleting one variable or adding one variable and
deleting two variables is achieved simultaneously. As a result, strategic oscillation around the

boundary between feasible and infeasible solutions is a variant of exchanging a bundle of variables.

4.4 Pseudo moves SAVE and ASPIRE

Pseudo moves are intelligent tools which can be used during a search process. They compensate for

the possible drawbacks of the choice rules in creating a effective neighborhood structure. Pseudo
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moves SAVE and ASPIRE are designed for such a purpose, and attempt to maximize the possibility
of visiting the optimal solution. These two schemes can catch the optimal solution if the solution
path goes near the optimal solution, even it does not visit the optimal exactly. They are very similar
to “aspiration” as defined by Glover [8, 9].
A. Pseudo move SAVE

The purpose of pseudo move SAVE is to support choice rules ADD and DEL by making a side
effect of recording a possible better feasible move which creates a better objective value than the
best value ever found during the evaluation of candidate variables. More specifically, even though a
candidate move is not the best candidate chosen by the choice rules ADD and DEL, if the candidate
move can produce a better objective value that is also feasible, the pseude move SAVE identifies
this new best solution and records its move and the resulting objective value (as if this move had
been an actual move during the search process). In some cases, this move is not the best candidate
that should be chosen. but simply recording the move has an important contribution toward visiting
the optimal solution.

B. Pseudo move ASPIRE

In some cases, the moves in the tabu lists (tabu-add-list and tabu-del-list) can produce a feasible
move and a better objective value than the best value ever found. These moves have a “tabu”
status, which means that they are protected from being added into or deleted from the current
solution for the next several iterations. During each iteration, the variables in the tabu lists can also
be evaluated to check this possibility, and if one of them is appropriate, that move is simply recorded
with its new best objective value. This kind of move is another "pseudo move” and can also play a
critical role in visiting the optimal solution. Consequently, if a variable in the tabu lists produces a
feasible solution which has a better objective value than the best value ever found, pseudo move
ASPIRE detects this possibility and records the solution.

4.5 Stopping rules for intensification

A. A pre-assigned number of strategic oscillation
The most simple stopping rule for an intensification process is a pre-assigned number of strategic
oscillations, which is heuristically set to the number of variables in a problem. This pre-assigned
number is an approximate combination of all possible different moves with all different variables, If
the number of strategic oscillation becomes greater than the pre-assigned number, then the current
intensification process stops.
B. Cycle detection

In the case of using deterministic choice rules, detecting a cycle provides a more intelligent
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stopping rule for an intensification process than the pre-assigned number of strategic oscillations,
During the search process, if the same solutions are visited again with a cycle, there is no possibility
of visiting a better solution. Detecting a cycle provides an effective stopping rule.

A cycle can be defined as “visiting repeatedly the same solution with the same objective value
after a fixed number of iterations.” In order to detect a cycle, we need to maintain at least two lists
about the same information: one is the entire information (for example, the entire sequence of moves
or solutions) and the other is a significant part (for example, recent 5 moves or recent 5 solutions)
of the entire information, This part should change at each iteration in order to reflect recent
information, The accuracy of cycle detection is totally dependent on the quality and quantity of this
part. For example, maintaining recent 20 solutions can detect a cycle more accurately than
maintaining only recent 5 solutions.

Incomplete information can be used to detect a cycle. For example, recording two lists, one with all
moves in a sequence and the other with the recent 5 or 7 moves in a sequence, is usually enough to

successfully detect a cycle in uncorrelated knapsack problems. When adding or deleting a variable,

An Example: Adding a variable to the current feasible solution
Candidate
Variables x3 Xs X7 X2 X9 X8 X10
NEW-OBJ 43+15 43+12 43+7 43+18 43+3 43+5 4342
=58 =55 =350 =61 =46 =48 =45
C-RES: 37412 37+10 3748 37+16 37+4 37+5 37+3
=49 =47 =45 =53 =41 =42 =40
C-RES:2 43+16 43+15 4345 43421 43+4 43+2 43+4
=59 =58 =48 =64 =47 =45 =47
C-RESs 36+15 36+9 36+2 36+20 3642 3646 36+5
=51 =45 =38 =56 =38 =42 =41
Feasibility I I F I F I I
C-RES\//CAP1 1.0888 1.0444 1 1.1777 09111 09333  0.8888
C-RES2/CAP: 1.18 1.16 0.96 1.28 0.94 0.9 0.94
C-RES3/CAP3 1.275 1.125 0.95 1.4 0.95 1.05 1.025
MNRC 1.275 1.16 1 1.4 0.95 1.05 1.025
oup 454901  47.4137 50 435714 484210 457142 43.9024
Next Move .
NEW-OBJ = the new objective value, C-RES = the current resource consumption, I = infeasible, F =
feasible, CAP = the capacity, MNRC = the maximum normalized resource consumption
OUP = the overall unit profit ( NEW-OBJ / MNRC )

Figure 6. The first iteration of the intensification process
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we can compare two lists to check whether the latter list becomes a subset of the former list. If the
latter list is a subset of the former list, then there is a high probability that a cycle exists.

For example, Let List-A and List-B be the following:

List-A = ( X1 X3 X4 X2 X5 X6 X7 X1 X5 X2 X5 X6 X7 X1 )

List-B = ( X2 X5 X6 X7 X1 ).

In this example, List-A is a list of all moves in an intensification process, and the variables
represent added or deleted variables in a sequence. List-B is the most recent 5 moves in a sequence.
In each iteration, the chosen variable is added to the end of the two lists. In List-B, the length of
the list is maintained as 5 by deleting the first variable if the length becomes 6 by the addition of
the chosen variable. In order to detect a cycle, we can simply check whether or not any five
sequential moves in LIST-A is the same with LIST-B. The current List-B is clearly a subset of
List-A, except for the last subset with 5 moves (Xz X5 Xs X7 X1). A cycle is detected. In some
cases, it may not be a cycle, and additional information such as the resulting objective function
values can be recorded simultaneously for a better detection. Figure 6 shows an example of the first

iteration of an intensification process to solve the same problem in Figure 2.

5. Diversification

A diversification strategy is used to encourage the search procedure to move to less-explored
regions of the solution space, The basic scheme for diversification is to frequently restart the search
process in a new region in order to find a near-optimal or optimal solution. For this purpose, a long
term memory device (like frequency counts) can be used to find a more promising region where the
optimal solution may exist. In a multi-level knapsack problem, a frequency count of each variable
(the number of times the variable appears in a solution) can be recorded, and this information can
be used effectively during the following intensification and diversification processes.

First, “intensification within diversification” is described as a simple learning process. This memory
records recent significant moves such as improving solutions. Based on this information, an inference
engine with If-Then rules guides the search process to make decisions on the promising solution
space to find the optimal, If there exists no improving solution, then in the following main
diversification process, random selection and recent frequency of the variables are used to create

initial solutions to continue to search.
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5.1 Intensification within diversification

During the search process, valuable information can be gathered, and used later for better solutions,
One such intelligent scheme is “long-term memory” [9]. This long-term memory can contribute to
intensifying or diversifying the search process, It is very important to determine what information
should be recorded and how it can be utilized for future diversification. Avoiding redundant moves is
a good criteria from which to start. For this purpose, some of the significant solutions and their
related paths are recorded. For example, we can record every initial feasible solution when restarting
the search in a new region for diversification. If recording all initial solutions is too expensive, then
alternatively some of significant initial solutions can be recorded in order to reduce the computational
burden. The record of these initial solutions can be used to protect redundant moves and redundant
solution paths between diversification processes.

Simple record-keeping with frequency of the recent three best improving solutions (FREQUENCY -
3BEST). frequency of all improving solutions (FREQUENCY-IMPROVING), and frequency of all
the current feasible and infeasible solutions (FREQUENCY-ALL) can be intelligently implemented
for diversification and “intensification within diversification.” In order to record three best improving
solutions, the global variable “IMPROVING-ISET” is created. At the end of each diversification
process, if IMPROVING-ISET is still empty, FREQUENCY-3BEST does not need to be updated.
This information handling process is explained by the two processes: one is the information-acquiring
process and the other is the information-utilizing process.

A. Information-acquiring process
a). Updating FREQUENCY-3BEST

During each diversification process, record, at maximum, the 3 most recent best improving solutions
in IMPROVING-ISET, and update FREQUENCY-3BEST in all variables in these solutions by
counting their appearance at the end of the diversification process.

b). Updating FREQUENCY-IMPROVING

If any improving solutions occur during a diversification process, then update immediately
FREQUENCY-IMPROVING by adding 1 to the existing value of the FREQUENCY-IMPROVING
of variables in those solutions,

c). Updating FREQUENCY-ALL

Each time when adding a variable in the current solution, record the current iteration for that
variable. Each time when deleting a variable, update FREQUENCY-ALL of that variable by
counting their tenures in the current solution using the difference between their exiting iterations
(the current iteration) and their iterations of entering the current solution. At the end of the
diversification process, record the current solution (ISET). Update FREQUENCY-ALL of the
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STEPI1. Create an initial feasible solution using the maximum normalized resource
—1 consumption. Put the resulting solution into ISET-LIST. Set IMPROVING-ISET empty.
Do the corresponding intensification process. If IMPROVING-ISET is not empty, then

go to STEP 2. Otherwise, update FREQUENCY-ALL and go to STEP 5.

\ J/

¢~ STEP 2. If IMPROVING-ISET is not empty, update FREQUENCY-3BEST, )
FREQUENCY-IMPROVING, and FREQUENCY-ALL. Set IMPROVING-ISET empty.
Create an initial feasible solution using variables with high FREQUENCY-3BEST value
for the next diversification process. If the created initial solution is in ISET-LIST, then go
to STEP 3. If not, put the initial solution into ISET-LIST. Do the corresponding
intensification process starting from the created initial solution. If IMPROVING-ISET is
not empty, then repeat STEP 2. If IMPROVING-ISET is empty, repeat STEP 2.

If IMPROVING-ISET is empty, update FH.W( TENCY-ALL, and go to STEP 3. W,

(" STEP 3. Create an initial feasible solution using variables with high
FREQUENCY-IMPROVING value. If the created initial feasible solution is in
ISET-LIST, then go to STEP 4. If not, put the initial solution into ISET-LIST.

Do the corresponding intensification process starting from the created initial solution.

If IMPROVING-ISET is not empty, then go to STEP 2. If IMPROVING-ISET is empty,
\_ update FREQUENCY-ALL and go to STEP 4. )

( STEP 4. Create an initial feasible solution using variables with high FREQUENCY-ALL )
value. If the created solution is in ISET-LIST, then go to STEP 5. If not, put the initial
solution into ISET-LIST. Do the corresponding intensification process starting from "
the created initial solution. If IMPROVING-ISET is not empty, then go to STEP 2.
\_If IMPROVING-ISET is empty, update FRF?I ENCY-ALL and go to STEP 5. y

(" STEP 5. Create an initial feasible solution using random selection.

Do the corresponding intensification process. Finally, if IMPROVING-ISET is not empty,
P> then go to STEP 2. If IMPROVING-ISET is empty, update FREQUENCY-RECENT and [
| FREQUENCY-ALL, then go to STEP 6.

v

( STEP 6. Create an initial feasible solution using variables with high FREQUENCY- h
RECENT value. If the resulting initial solution in in ISET-LIST, then go to STEP 7. If not,
put the created initial solution in ISET-LIST. Do the corresponding intensification process. —
Finally, if IMPROVING-ISET is not empty, then go to STEP 2. If IMPROVING-ISET is
empty, update FREQUENCY-RECENT and?(EQUENCY—ALL, then go to STEP 7. )

~ STEP 7. Create an initial feasible solution using variables with high FREQUENCY-ALL )

value. If the resulting initial solution is in ISET-LIST, then go to STEP 5. If not, put

—— the created initial solution in ISET-LIST. Do the corresponding intensification process. =
Finally, if IMPROVING-ISET is not empty, then go to STEP 2. If IMPROVING-ISET is

L empty, update FREQUENCY-RECENT and FREQUENCY-ALL, then go to STEP 5.

S

Figure 7. The diversification process

variables in this solution by counting their tenures (the difference between the final iteration of the
intensification process and each variable's entering iteration).
B. Information-utilizing process

The updated frequencies are used to create initial solutions for the next several diversification
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processes in a sequence. In creating an initial solution for each diversification process with the
updated information, human intelligence can easily be represented with If-Then rules, These rules
can create a partial learning effect that allows the search procedure to find better solutions around
the best value recently found. Step 2, Step 3, and Step 4 in Figure 7 show a cascading execution of
these rules.

During each step, information-acquiring process is performed simultaneously, and FREQUENCY-
3BEST. FREQUENCY-IMPROVING, and FREQUENCY-ALL are updated, Steps, 2. 3, and 4 have
important roles in locating good solutions. These steps are diversification processes, especially devoted
to intensifying the search process within a very restricted area. Consequently, these steps are called a
process of “intensification within diversification” using high frequency information. During this process,
if no improving solution is found, then we continue to diversify the search process using random

selection in STEP 5 until the current iteration number exceeds a preset limit,

5.2 The main diversification process

We define FREQUENCY-RECENT as the frequency of the variables in the current solution in
each diversification process. During every diversification process, we can collect FREQUENCY-
RECENT, and simply accumulate it to FREQUENCY-ALL. More specifically, in every diversification
process, FREQUENCY-RECENT is set to zero at the beginning, accumulated during the process, and
finally, added to FREQUENCY-ALL at the end of the process,

Variables that have occurred with higher frequency have a higher priority for constructing an
initial solution for the corresponding intensification process. In order to obtain unbiased frequency
information, random selection (every other diversification process) is used to create an initial solution
for a diversification process. Then, for the next two diversification process, the updated information
contained in FREQUENCY-RECENT and FREQUENCY-ALL is used to create its initial solution,
The three construction processes alternate every other time. Using these three alternating diversifica-
tion processes provides intelligent learning not only in the short run, but also in the long run.

To determine whether the created initial solution is exactly the same as an initial solution in the
list (ISET-LIST), “matching” can be performed [19]. The way to perform "matching” is, without
reordering, to record the initial solutions as they are. When determining whether the created initial
solution is the same as one in the list, we can, first, check whether the two initial solutions have the
same number of variables. If they do, we check whether every member of the variables in the
created initial solution is also a member of the initial solution in the list. If any of the variables are
different, it is determined that the two initial solutions are not the same.

For example, let us assume two initial solutions previously created are in the initial solution list
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(ISET-LIST), and a new initial solution is created by using FREQUENCY-ALL data. They are
described as follows:

ISET-LIST = ( (X3 X10 X4 X2) (X10 X5 X2) )

A new initial solution = (X10 X2 X5)

The newly created initial solution is already a member of ISET-LIST. and its corresponding
intensification will certainly create the same redundant solution path if we use deterministic choice
rules ADD and DEL with deterministic tabu-list lengths. In this example, the two initial solutions,
(X10 X5 X2), and (X10 X2 X5), are equivalent even though they have different orders,

In general, STEP 5 is a kind of information-acquiring (or information-generating) process, and
STEP 6 and STEP 7 are another type of information-utilizing process. These three processes are
oscillating strategically during the diversification processes. Only after a diversification process with

random selection, do we use high frequencies to create an initial solution for the next diversification,

6. Generating Problems

Several articles in the literature classify knapsack problems into four categories: uncorrelated,
weakly-correlated, strongly-correlated, and value-independent, based on the relationships between the
profits (C;) and resource consumptions (Aj). For multi-level knapsack problems, the formulae of
Balas and Zemel [1] are modified slightly and extended. For the computer experiments to test the

suggested approaches in this study, five types of problems are generated with the following

formulae:
(1) Uncorrelated 1<{=¢C; (= 1000
1 (= Ay <{= 1000
(2) Weakly-correlated 1{=¢C; <= 1000
If Cj (= 500, 1 (= A; {= C; + 500
otherwise, Cj + 500 (= Aj; (= C; + 500
(3) Moderately-correlated 1 <{= C; {= 1000
If Cj <= 300, 1{= A; <= C; + 300
otherwise, Cj + 300 (= A<= Cj+ 300
(4) Strongly-correlated 1 <= ;<= 1000
If Cj <= 100, 1<= Aj<{= C; + 100
otherwise, Ci + 100 (= A; <= C; + 100

(5) Extremely-correlated 1 (= C; {= 1000
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If G <= 10, 1<{= Aj{=C;+ 10
otherwise, Ci+10<= Aj<{=C + 10

These formulae first choose C; from an uniform random distribution and next create Aj according
to the type of problems. For the convenience of creating multiple Ay's for multi-level knapsack
problems, this sequence is the opposite of Balas and Zemel [1], which first create Aj and next C;

In order to add more variety to the problem set, we introduce some deviations to the resource
capacities. Since Aj's range from 1 to 1000, the sum of Aijs for a single resource becomes
approximately the product of 500 and the number of variables ( 500 * N). One third to one half of
this product value is randomly assigned to the resource capacities, This appears to produce
challenging problems. Furthermore, large deviations between resource capacities is unrealistic, and is
avoided. Under the above considerations, resource capacities of each problem are determined by using
the following formulae:

FN = the number of variables in each problem

NUM; = (integer ( FN / 4) )
NUM:; = (integer ( FN / 6) )
NUMz = NUM; - NUM;

(Random NUM3) = a uniform random integer between 0 to ( NUM; - 1 )
Resource capacity (i) = [ 1000 * ( NUM; + (random NUMs) + 1 ) ]

As these formulae show, the resource capacities of a problem have a distribution from (1000 *
NUMI) to (1000 * NUM;). For the problems actually created, the 20 variable problems have a
range of 4000 to 5000, the 40 variable problems have a range of 8000 to 10000, and the 60 variable
problems have a range of 11000 to 15000. 45 problems are created: 9 uncorrelated, 9 weakly-
correlated, 9 moderately-correlated, 9 strongly-correlated, and 9 extremely-correlated, Each set of 9
problems consists of three 10-constraint / 20-variable problems, three 20-constraint / 40-variable
problems, and three 30-constraint / 60-variable problems. In order to differentiate these problems,
two letters are used to reflect their correlation, four digits are used to indicate the number of
variables and the number of constraints in each problem, and the final one digit is used as an index
to differentiate the same sized problems, For example, UC10201 means the uncorrelated problem with
10 constraints, 20 variables, and number 1 problem of this type. Additionally, WC is used for
weakly-correlated, MC for moderately-correlated, SC for strongly-correlated, and EC for extremely-

correlated.
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7. Test Results

An Experiment is performed to test the Al approach with tabu search on the 45-generated
problems (9 uncorrelated, 9 weakly-correlated, 9 moderately-correlated, 9 strongly-correlated, and 9
extremely-correlated). The approach uses high frequency of the variables and random selection
alternatively for diversification. The total number of iterations is determined approximately by the
product of the numbers of diversification trials and strategic oscillations. This value is the square of
the number of variables like N * N. But, from our findings in this experiment, the number of total
iterations should be at least 2/3 * N * N because the number of strategic oscillations (N) creates
slightly more than N moves. This means returning to the feasible region may sometimes involve
adding or deleting more than one variable. Finally, the total number of iterations are limited to 1000
for the 20 variable problems, 2000 for the 40 variable problems, and 4000 for the 60 variable
problems.

The real computation time of the suggested approaches can be represented as the following:

O (1/2 * N * N *= C * D) where N is the number of variables in a problem.

In this order function, 1/2 * N indicates the number of candidate variables to be evaluated for
each move, the next N is the number of moves resulting from strategic oscillation in an
intensification process, C is the number of constraints in the problem, and D represents the number
of diversification processes, which contain their corresponding intensification processes.

The results of the test are described in Table 1. 39 optimal solutions are visited: all cases in
uncorrelated and weakly-correlated problems, 8 cases in moderately-correlated and strongly-correlated
problems, and 5 cases in extremely-correlated problems. The approach produces 8626 instead of the
optimal solution (8630) in one moderately-correlated problem (MC20403). In one strongly-correlated
problem (SC20401), the approach produces 8567, for which the optimal solution is 8577. In four
extremely-correlated problems (EC20402, EC20403, EC30602 and EC30603), the approach produces
8024, 8025, 11036 and 11031 instead of the optimal solutions such as 8027, 8026, 11037 and 11032.
The results are compared with each other in terms of problem sizes, types, and iterations needed to
reach the optimal, and are described in Table 2. The table clearly shows that the more correlated

and the larger the problem is, the more iterations it needs to reach the optimal,
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8. Conclusions and Future Research

The basic premise of this study comes from the belief that if we have some valuable information
about a problem such as the attributes of the optimal solution, its solution space and its solution
paths, and if we can perform some intelligent actions, appropriately in time and space, we can
hopefully find the optimal or near optimal solution within a small number of trials, The AI approach
tries to do its best to find the optimal solution by utilizing intelligent actions appropriately in time
and space. These intelligent actions are imitated from human intelligence, During the past
experiment, we conclude that the basic idea is successfully accomplished. The Al approach that uses
three as tabu-list length is the best one. In 60 variable / 30 constraint problems, LINDO usually
takes several hundred thousand iterations to obtain the optimal or near-optimal solution
(approximately about 10 hours in a pentium PC). But our Al approach usually takes one or two
thousand iterations, In comparing computation time, our approach consumes less than one tenth of
the computation time of LINDO.

In this study, a simple learning effect is designed so that it may be achieved from the information
about improving solutions. Another more Al comes from random selection and frequency information,
and helps to guide the search to more regions of the solution space. On the other hand, information
acquiring and utilizing processes are very expensive because of their time consuming nature. They
should be appropriately designed with effective data structures and if possible, their use should be
minimized, In addition, cycle detection is very intelligent but expensive, and it should be used
carefully, Several intelligent actions such as cycle detection, pseudo moves, matching, strategic
oscillation, diversification within intensification, and intensification within diversification can easily be
used for other difficult problems,

This study provides a good example of utilizing human heuristic intelligence to solve a multi-level
knapsack problem, that is NP-complete. The Al approach, which uses the oscillation of the
information-acquiring processes and the information-utilizing process, provides a wonderful framework
for a learning effect. Collecting unbiased information, and utilizing that information with learning in
solving combinatorially difficult problems are the most promising for future research. The results of
this study. show the superiority of the approach. Long-run testing in the future is needed to confirm
this superiority, Research Opportunities also exist in the area of probabilistic approaches in relation to
Simulated Annealing and Genetic Algorithms. The suggested intelligent actions can be used for
solving the Generalized Assignment Problem, the Traveling Salesman Problem or any pure 0-1

integer problems including Job-shop Scheduling.
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Table 1. Test Resuits

Tabu-list-lengths 1 2 3

Problem | Opt. U-bound Cor. best itr (nim nsna)| best itr (nim ns na)| best itr (nim ns na)
UC20101 | 5227 5457.249 0.21954 | 5227* 76 (3,1,0) 5227 66 (4,1,0)| 5227 37 3,2,0)
UC20102| 5946 6314.669 0.15504 § 5946* 23 (4,0,0) 5946* 7 (4,0,1) | 5946* 7 (4,0,2)
UC20103 | 6285 6570.273 0.21058 | 6285* 53 (5,0,0) 6285* 13 (5,0,0) | 6285* 21 (5,0,0)
UC40201 | 11801 12149.430 0.12667 | 11801* 1237 (9,0,0) | 11801* 1444 (11,2,3% 11785 365 (9,0, 1)
UC40202 | 11916 12115.281 0.13344 | 11916* 2 (3,0,0) | 11916* 2 (3,0,0) | 11916* 2 (3,0,0)
UC40203 | 11275 11518.479 0.16097 | 11268 12,0,0) 11275« 425 (3,0,0) | 11275* 140 (3,0,1)
UC60301 | 17766 18110.964 0.08925 | 17766* 73 (7.2,0) | 17766* 1402 (10,1,0]17766* 691 (8,1,0)
UC60302 | 18800 19070.982 0.10760 | 18800* 56 (5,0,0) | 18800* 20 (5,0,1) | 18800* 40 (6,1,0)
UC60303 | 18646 18896.923 0.10796 | 18646* 358 (7,1,0) | 18646* 30 (7,1,0) 18646* 1457 (14,1,2)
WC20101] 4499 4964.515 0.56324 | 4499* 257 (4,1,0) 4499* 162 (5,2,0) | 4499* 92 (5,2,0)
WC20102] 3839 4165.678 0.60884 | 3839* 372 (7,1,0) 3839+ 385 (8,2,1) | 3839* 593 (7,3,3)
WC20103] 4527 4774.148 0.68886 | 4527* 15 (7,3,0) 4527* S5 (7,4,0) | 4527 74 (6,3, 1)
WC40201| 8438 8749.125 0.63734 | 8438* 303 (14,7,0)| 8438* 154 (15,6, 1)] 8438* 1030 (13,3,2)
WC40202| 8787 9081.054 0.56653 | 8787* 644 (9,4,0) 8787+ 268 (5,2,0) | 8787* 1461 (7.1,0)
WC40203] 8262 8543.669 0.60213 | 8262* 300 (5,0,0) 8262* 109 (5,0,0) | 8262* 414 (5,0.1)
WC60301] 11473 11738.018 0.63062 [11473* 1533 (23.8,0) | 11473* 3876 (17,7.2) | 11473* 418 (17,6, 5)
WC60302| 11377 11618.511 0.67980 {11360 1926 (18, 12,0)] 11377* 679 (20,10,1) | 11377* 1691 (19,7,3)
WC60303] 11626 11889.077 0.58207 11626* 1276 (20,9,0) | 11626* 92 (15, 3,3) | 11626* 3279 (15,4,3)
MC20101| 4012 4177.624 0.85000 | 4012* 68 (7,.4.0) 4012* 47 (7,2,2) | 4012* 69 (4,1,0)
MC20102] 4115 4298.980 0.90800 | 4115* 873 (11.7,0){ 4082 200 (10,6,0)| 4115* 31 (10,4, 1)
MC20103| 4397 4508.292 0.85100 1 4397* 12,00 4397+ 1(2,0,0) | 4397* 1(2,0,0
MC40201| 8173 8326.062 0.85660 | 8173* 265 (13.4,0){ 8173* 973 (13,4, 1)| 8173* 342 (14,3, 1)
MC40202| 8384 8557.174 0.84627 | 8384* 109 (14,5,0) | 8384* 234 (17,5,0)| 8384* 659 (14,5,2)
MC40203] 8630 8807.713 0.86047 | 8626 55 (11.4,0) | 8626 733 (12,3, 1)| 8626 1824 (12,3,2)
MC60301] 11962 12122.913 0.85470 [11962* 2738 (14.5,0) | 11962* 2700 (19,7,3)|11962* 642 (12,4, 1)
MC60302] 12030 12208.771 0.85754 |12019 247 (16.3,0) | 12029 1238 (21, 3,0)] 12030* 304 (13,2, 1)
MC60303] 12141 12324.132 0.86597 {12141* 741 (16,9,0) | 12141* 2349 (18,8,0)| 12141* 649 (18,8, 1)
SC20101 | 3992 4050.174 0098177 | 3892 170 (5,3,0) { 3992* 115 (4,2,0) 3992* 179 (6, 1,0)
SC20102 | 3895 3969.677 0.96206 | 3895* 15 (5,2,0) | 3895* 15 (6,2, 1) 3895* 79 (7,2, 1)
SC20103 | 4026 4097.951 0.97748 | 4026* 220 (8,3,0) | 4026* 126 (6,2,0) 4026* 256 (7,1, 1)
SC40201 | 8577 8635.621 0.98490 | 8568 20 (10.8,0)| 8567 20 (10,7, 1)} 8567 20 (10,7, 1)
SC40202 | 8148 8195.965 0.98041 | 8131 542 (10,8,0)| 8148* 353 (11,9,0)1 8148* 1254 (12,8,4)
§C40203 | 8281 8329.444 098387} 8281* 207 (11.5,0)| 8281* 24 (12,5, 1)| 8281* 24 (13,6,2)
SC60301 |11378 11444.120 0.98103 {11366 1416 (19.9,0)| 11371 3487 (18,9,2) }|11378* 597 (17,11,2)
SC60302 |11364 11417.530 0.97895 {11360 2110 (19.11,0)] 11347 1882 (18, 13,0y} 11364* 332 (16,8, 2)
SC60303 j11322 11363.727 0.98042 |11309 145 (18, 8,0) | 11295 1832 (22, 10, 1)} 11322* 3253 (20.8.2)
EC20101 | 4002 4010.561 0.99980 | 3999 923 (8,5,0) 3998 128 (8,5.1) 4002* 405 (8.4,2)
EC20102 | 4008 4021.287 0.99982 | 4008* 207 (9,6,0) 4008* 146 (6,3, 1) 4008* 53 (5.2, 1)
EC20103 | 4008 4013.704 0.99977 { 4006 177 (6,4, 0) 4006 517 (8,5, 1) 4008* 156 (8,2,2)
EC40201 | 8024 8030.749 (0.99975 { 8023 74 (9,7,0) 8022 208 (9,7,0) 8024* 238 (10,7, 1)
EC40202 | 8027 8035.268 0.99978 | 8024 12 (10.3,0) | 8024 12 (10,3,0) 8024 12 (10,3,0)
EC40203 | 8026 8027.635 0.99986 | 8025 73 (9,7.0) 8025 286 (10,6,2) 8025 11 (7.3, 1)
EC60301 11042 11048.040 0.99982 |11042* 3854 (14.8,0) |11040 1015 (15,8,0) |11041 1199 (13,7.0)
EC60302 11037 11041.260 0.99982 11036 1317 (10.8,0) |[11036 1183 (11,9,0) {11036 1286 (10,7,1)
EC60303 |11032 11038.370 0.99978 J11031 344 (14, 11,0)|11031 3140 (18,12,3)| 11030 2839 (16, 11, 2)

Opt.= the optimal solution, U-bound = Upper bound, Cor. = Correlatiun, best = the best solution found, * = the optimal solution found,
itr = the number of iteration, nim = the number of improving moves, ns = the number of SAVE, na = the number of ASPIRE,
UC = Uncorrelated, WC = Weakly correlated, MC = Moderately correlated, SC = Strongly correlated, EC = Extremely correlated
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Table 2. The average iteration and time for the best
solution among the various problem type

Problem
type and size

Avg. iterations

Avg. seconds*

UC1020s
UC2040s
UC3060s
WC1020s
WC2040s
WC3060s
MC1020s
MC2040s
MC3060s
SC1020s
SC2040s
SC3060s
EC1020s
EC2040s
EC3060s

34
402
459
223
520

1641
143
577

1290
131
274

1673
301
103

1804

4
90
172
27
117
615
17
130
484
16
62
627
36
23
676

* seconds in a pentium 75 MHz PC
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