
lable at ScienceDirect

Nuclear Engineering and Technology 55 (2023) 3030e3038
Contents lists avai
Nuclear Engineering and Technology

journal homepage: www.elsevier .com/locate/net
Original Article
ACA: Automatic search strategy for radioactive source

Jianwen Huo a, Xulin Hu a, *, Junling Wang b, Li Hu a

a School of Information Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
b School of National Defense Science, Southwest University of Science and Technology, Mianyang, 621010, China
a r t i c l e i n f o

Article history:
Received 26 November 2022
Received in revised form
1 April 2023
Accepted 14 May 2023
Available online 20 June 2023

Keywords:
Radioactive source search
Source location estimation
Path planning
Occupancy grid map
Monte Carlo
* Corresponding author.
E-mail address: xulinhu_zhang@163.com (X. Hu).

https://doi.org/10.1016/j.net.2023.05.017
1738-5733/© 2023 Korean Nuclear Society, Published
licenses/by-nc-nd/4.0/).
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Nowadays, mobile robots have been used to search for uncontrolled radioactive source in indoor envi-
ronments to avoid radiation exposure for technicians. However, in the indoor environments, especially in
the presence of obstacles, how to make the robots with limited sensing capabilities automatically search
for the radioactive source remains a major challenge. Also, the source search efficiency of robots needs to
be further improved to meet practical scenarios such as limited exploration time. This paper proposes an
automatic source search strategy, abbreviated as ACA: the location of source is estimated by a con-
volutional neural network (CNN), and the path is planned by the A-star algorithm. First, the search area is
represented as an occupancy grid map. Then, the radiation dose distribution of the radioactive source in
the occupancy grid map is obtained by Monte Carlo (MC) method simulation, and multiple sets of ra-
diation data are collected through the eight neighborhood self-avoiding random walk (ENSAW) algo-
rithm as the radiation data set. Further, the radiation data set is fed into the designed CNN architecture to
train the network model in advance. When the searcher enters the search area where the radioactive
source exists, the location of source is estimated by the network model and the search path is planned by
the A-star algorithm, and this process is iterated continuously until the searcher reaches the location of
radioactive source. The experimental results show that the average number of radiometric measure-
ments and the average number of moving steps of the ACA algorithm are only 2.1% and 33.2% of those of
the gradient search (GS) algorithm in the indoor environment without obstacles. In the indoor envi-
ronment shielded by concrete walls, the GS algorithm fails to search for the source, while the ACA al-
gorithm successfully searches for the source with fewer moving steps and sparse radiometric data.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the popularization and application of nuclear power plants
and irradiation industries worldwide, as well as the extensive
development of nuclear facilities decommissioning and nuclear
waste disposal, the risk of loss of radioactive source is gradually
increasing. In the event of loss of radioactive source, it is necessary
to search for radioactive source as soon as possible to avoid social
panic and casualties [1]. Early source localization methods mainly
relied on deploying a large number of sensor nodes in a radiation
environment to build a sensor network. Then, based on a large
amount of observation data obtained by the sensor nodes, the
location of radioactive source is estimated by using the geometric
method [2,3] and the least square method [4,5]. For example, Rao
et al. used three nuclear radiation detectors to build a fixed sensor
by Elsevier Korea LLC. This is an
network, and then estimated the location of low-level point
radioactive source in an open area by geometric method [3]. Howse
et al. deployed four nuclear radiation detectors in the room to form
a sensor network, and then used the least square method to esti-
mate the location of mobile radioactive source in real time [4]. The
maximum likelihood estimation method [6e8] has also been used
to estimate the number of sources and the source term parameters
by discrete radiation data from multiple detectors. In practical ap-
plications, the number of radiation measurements usually needs to
be as few as possible due to the limited detection time. With ad-
vances in robotics, mobile robots carrying detectors have gradually
been used to search for unknown radioactive sources due to their
low risk, high search efficiency and source localization accuracy.

Bayesian estimation methods [9e12] are commonly applied to
estimate source parameters. According to Bayesian theory, the
posterior probability distribution of the source parameter vector
which can be approximated by the Markov chain Monte Carlo
(MCMC) [9], particle filter [10,11] and importance sampling [12]
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methods is constructed from the radiation data obtained by the
detectors. By solving the posterior probability distribution, the
source parameters of radioactive source can be obtained. Huo J et al.
designed an automatic robot search algorithm by using the partially
observable Markov decision process (POMDP), and studied the
improved MCMC method based on the Bayesian framework to
realize the parameter estimation of radioactive source [9]. Liu et al.
[10]studied an unscented particle filtering algorithm based on
divide-and-conquer sampling to improve the search accuracy of
radioactive source. Gao et al. [11] proposed the peak suppressed
particle filter method which can handle multi-modal estimation
problems in a mixed radiation field with sparse measurement data.
Interpolation algorithms have also been applied to localize un-
known radioactive sources by reconstructing 2D or 3D radiation
dose rate fields. West A et al. [13] studied the reconstruction of 2D
radiation distribution map of single radioactive source by Gaussian
process regression method. They estimated the source parameters
by using a mobile robot equipped with a compact CeBr3 scintillator
detector and a laser range sensor. Xie X et al. [14] designed a net
function interpolation method, which can reconstruct the 3D ra-
diation dose rate field based on sparse measurement data in a
three-dimensional space with concrete walls and locate unknown
radioactive sources. In addition, gamma cameras have also been
studied for source parameter estimation by recording the number
and direction of incident photons [15,16]. In Ref. [15], Tomita H et al.
developed a path planning system based on 4 p gamma imaging to
predict the next measurement position of mobile robot, and esti-
mated the source parameters through the random forest algorithm.

With the development of artificial intelligence, machine
learning methods such as supervised learning and reinforcement
learning have been gradually applied to the research of source
search [17e20]. Liu Z et al. [17] proposed to use convolutional
neural network to plan the next measurement position of the de-
tector, and combine the double Q-learning algorithm to complete
the radiation source search task. Fathi A et al. [18] designed a
network architecture similar to “Lenet-500, which can quickly locate
the lost gamma source by collecting sparse energy deposition data.
Zhao Y et al. [19] used deep reinforcement learning (DRL) tech-
niques to extract the feature of belief state, and introduced the deep
Q-network (DQN) algorithm in the source search process to make
optimal decisions. Proctor P et al. [20] presented a novel neural
network architecture based on the advantage actor critic (A2C)
framework to search for radiation sources in the non-convex
environment. In addition, it is a good idea to represent the search
area with an occupancy grid map, which is helpful for mobile robot
to avoid obstacles and planwalking paths during the search process
[13,21,22]. For example, Ji Y et al. [22] introduced an occupancy grid
map to study the path planning of four-neighbor search A-star al-
gorithmwhen searching for odor source. It is worth noting that the
Monte Carlo (MC) method is also widely used in numerical simu-
lations to simulate the physical process of particle transport in
matter. A large number of simulation programs based on the MC
method such as Geant4, MCNP and FLUKA have also been devel-
oped and gradually improved [23e25].

Due to limited exploration time, the searcher searching for
radioactive sources in indoor environments often has to make
effective motion decisions at current state with limited sensing
capabilities and instantly available information [22]. However,
existing source search methods have certain limitations and face
several new challenges under such conditions. On the one hand, the
searcher has to estimate the source location accurately as early as
possible, and make appropriate global path planning at the current
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position to improve the efficiency of source search. The searcher
can only obtain sparse radiation data within a limited exploration
time, which requires a suitable source parameter estimation
method to estimate the location or orientation of the source. On the
other hand, in indoor environments, there may be obstacles in the
area around unknown radioactive source, which may provide
confusing information to the searcher and cause the source search
to fail.

To address these challenges, this paper proposes an efficient
Automatic source search strategy (i.e. ACA algorithm) based on
Convolution neural network and A-star, which is suitable for both
indoor environments without and with obstacles. The main con-
tributions of this paper are as follows:

(1) This paper introduces an occupancy grid map to represent
the search area. On this basis, the eight-neighbor search A-
star algorithm is used to plan the global path of the current
state to make the effective movement decisions and avoid
obstacles in the indoor environment.

(2) CNN is employed as the source parameter estimation model
which can estimate the direction and location of the source
with sparse radiation data in indoor environments without
and with obstacles. We take estimated source location as the
searching target, which provides the searcher with a globally
optimal solution for the current state.

(3) This paper proposes an automatic source search algorithm
through an iterative search process: source location estima-
tion, path planning. Verification experiments show that the
proposed algorithm is superior to the GS algorithm in terms
of the number of moving steps, the number of radiation
measurements and the search success rate.

This paper is organized as follows: Section 2 introduces the
radioactive source search task, search environment grid division,
source parameter estimation model based on CNN, and path
planning based on A-star algorithm. Section 3 carries out the
simulation experiments of radioactive source search in indoor en-
vironments without and with obstacles, and analyzes the perfor-
mance of the ACA algorithm. Section 4 concludes the paper and
discusses possible future steps.
2. Problem formulation

2.1. Source search task description

Consider an indoor scene with an area of 10 m � 15 m. An
isotropic g radioactive source with an activity of 4 mCi and an
energy of 2 MeV is lost in the indoor ground which is large enough
relative to the radioactive source, and the distance between the
detection plane of the searcher and the ground is h, as shown in plot
(a) of Fig. 1. The ground is divided into 150 cells with 1m� 1m (the
cell numbers are S1~S150 in sequence), and the radioactive source
can be located in any of the 150 cells. Any location of the radioactive
source within the cell is replaced by the central position of the cell.
Subsequently, the search area is represented as an occupancy grid
map with a resolution of 0.25 m (40 � 60 grids), and the center of
grid represents the radiation measurement point, as shown in plot
(b) of Fig. 1.

In order to obtain the radiation dose rate distribution of radio-
active source in detection plane, the numerical simulation based on
the MC method is carried out by Geant4 program. As shown in
Fig. 2, the radiation dose rate distribution map of the radioactive



Fig. 1. (a) Description of radioactive source search problem. (b) The search area is represented by an occupancy grid map.

Fig. 2. Radiation dose rate distribution map of radioactive source (S66) at the height of
1 m above the ground (dose rate: mGy/s).
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source (S66) at a height of h ¼ 1 m above the ground is obtained by
Geant4 approximation, and the calculation principle is as follows:

D¼ k � dE
r:dV

(1)

where D is the air absorbed dose rate; E is the energy deposition of
gamma rays in the air; V is the volume of air, r is the air density; k is
the conversion factor for converting energy deposition into air
absorbed dose rate. Similarly, the radiation dose rate distribution of
radioactive source at different locations (S1~S150) at the height of
h ¼ 1 m above the ground can be approximated by the Geant4
program. In the source search task, the searcher has to find lost
radioactive source with as few radiation detection times and
moving steps as possible due to limited search time.

2.2. Radiation data acquisition

When the occupancy grid map is full of unoccupied grids, the
searcher can move from the current state to any of the eight di-
rections: up, down, left, right, southwest, northwest, northeast, and
southeast. However, since there may be occupied grids in the oc-
cupancy grid map, the searcher only moves to the unoccupied grids
and collects radiation data in the unoccupied grids. In order to
obtain radiation dataset required by the source parameter esti-
mation model, we use eight neighborhood self-avoiding random
walk (ENSAW) algorithm to collect radiation data in the occupancy
grid map. The ENSAW algorithm will randomly select an initial
position in the occupied grid map at the beginning of collecting
radiation data, and will not repeat the position it has already
walked. In particular, it will bypass the occupied grid whenwalking
3032
(Fig. 3).
To reduce computational overhead of generating self-avoiding

random walk paths, the method of weighted importance sam-
pling is adopted [26]. Let Xi ¼ ðxi; yiÞ represent the coordinate of
step i of the n-step walk path (1 � i � n; i2Z). Next, the probability
mass function can be represented as

PðX1;X2; :::;XnÞ¼ IððX1;X2; :::;XnÞ2EnÞ
Zn

(2)

where En is the set of n-step self-avoiding walk path; Ið $Þ is the
indicator function; Zn is unknown. To select the next measurement
point, a new probability mass function QðX1;X2; :::;XnÞ is defined
for weighted importance sampling. Suppose the number of unoc-
cupied adjacent grids of Xi�1 is di�1 (i � 2; i2Z). Since all infor-
mation before the i-th step is known when predicting Xi,
QðXijX1;X2; :::;Xi�1Þ can be calculated by

QðXijX1;X2;:::;Xi�1Þ¼
�
1=di�1;ifXiisunoccupiedadjacentgridofXi�1

0;otherwise

(3)

Further, X1;X2, …, Xn will have a joint probability:

QðX1;X2; :::;XnÞ¼ IððX1;X2; :::;XnÞ2EnÞ
d1/dn�1

(4)

Note that ðX1;X2; :::;XnÞ∝ IððX1;X2; :::;XnÞ2EnÞ, the weight form
can be represented as

WðX1;X2; :::;XnÞ¼ IððX1;X2; :::;XnÞ2 EnÞd1/dn�1 (5)

In this paper, radiation data is collected once every two steps in
order to reduce the number of acquisitionwithin the limited search
time. For the radiation dose rate distribution maps corresponding
to 150 different source locations, radiation dose rate values of 20
steps are collected by ENSAW algorithm as the input data for CNN
pre-training, that is, the networkmodel has been trained before the
searcher is scheduled.
3. The ACA algorithm

3.1. Source parameter estimation based on convolutional neural
network

The direction and location of the radioactive source is initially
unknown for searcher, and the search for radioactive source is a
gradual process. However, existing source parameter estimation
models are difficult to accurately estimate the source parameters in



Fig. 3. Collect radiation data in occupied grid map. The blank grid represents the unoccupied grid; the black grid represents the occupied grid; the pink arrow indicates the di-
rection which searcher may choose to move next. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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indoor environments with obstacles. Therefore, in this study, con-
volutional neural network (CNN) algorithm is used for the param-
eter estimation of radioactive source. CNN is widely used in image
classification and cognition, machine vision, natural language
processing and other fields. Not long ago, Fathi et al. [18] and Hu
et al. [27] used CNN to predict the location of radioactive sources,
which can locate the location of single or multiple radioactive
sources with sparse measurement data. However, when the num-
ber of grids and the potential location of source are large, the
estimation accuracy of the network model will decline rapidly and
the overfitting occurs in training. In order to solve these problems,
this paper introduces “Dropout” and adjusts the superparameters
of the full connection layer to increase the estimation accuracy of
source location, avoid overfitting of CNN and reduce the training
time [28e30]. Also, a path planning algorithm based on heuristic
search is selected and introduced to make the optimal decision at
the current state in Section 3.2.

In Section 2.2, the radiation dataset is obtained by the ENSAW
algorithm. Next, the radiation dataset is randomly divided into
training set, verification set according to the ratio of 96.5 : 3.5.
Among them, the training set is used to fit the classification model,
and the validation set is used to adjust the hyperparameters of the
model and conduct a preliminary evaluation of the performance of
the network model. The designed CNN architecture is shown in
Fig. 4. The CNN architecture uses three layers of convolutional
layers to extract radiation features, and three layers of full con-
nections form an artificial neural network for source location
classification. After the radiation feature extraction is completed,
the convolution result is flattened into a long vector composed of
Fig. 4. The design of convolutional neural network architecture. Conv1, Conv2 and Conv3 rep
first layer is the input layer. The input data is expanded into three-channel. The convolution
The convolution kernel size of the convolutional layers Conv2 and Conv3 is 3 � 3, and the nu
neurons in each layer is 500, 300 and 150, respectively. S1~S150 represent 150 source locatio
Conv3 and the fully connected layers FC4 and FC5 all use the ReLu activation function which
Softmax activation function, which is defined as SoftmaxðxiÞ ¼ exiPk

j¼1
exj
. Adam is chosen as t
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117504 neurons, which will be used as the input layer of the arti-
ficial neural network. However, if each neuron in the long vector is
directly connected to each neural source of the fully connected
layer FC4, the total trainable parameters will exceed 70 million,
resulting in over-fitting of the network model and a sharp decrease
in classification accuracy. Therefore, we introduce “Dropout” after
‘Flatten’ to randomly deactivate neurons with a probability of 30%,
which will avoid over-fitting of the network model and increasing
the accuracy of source location estimation.
3.2. Path planning based on A-star algorithm

To solve the problem that the features of randomly collected
radiation data in the search process may not be extracted by the
network model, we introduce A-star algorithm to plan source
search path and guide the direction of radiation collection. A-star
algorithm is often used in mobile robot's path planning in robot
field [21], and can minimize the sensor operations to reduce time
consumption [31]. Unlike non-heuristic search [32], A-star algo-
rithm combines Dijkstra algorithm with breadth first search (BFS)
algorithm through heuristic search, and uses cost estimation
function as the basis of path search to obtain the optimal path. The
cost estimation function can be expressed as:

f ðnÞ¼ gðnÞ þ hðnÞ (6)

Where, n represents the current node in the path search process;
f ðnÞ represents the total cost of the starting position node to reach
the target node through the current position node; gðnÞ represents
resent convolutional layers, and FC4, FC5 and FC6 represent fully connected layers. The
kernel size of the convolutional layer Conv1 is 3 � 3, and the number of channels is 32.
mber of channels is 64. FC4, FC5 and FC6 are fully connected layers, and the number of
n classification labels. The activation functions of the convolutional layers Conv1, Conv2,
is defined as f ðxÞ ¼ maxð0;xÞ. The activation function of the output layer FC6 uses the

he optimizer for the network.
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the actual cost from the starting point node to the current location
node; hðnÞ represents the valuation cost from the current location
node to the destination node. The starting position coordinate is ðx1;
y1Þ, and the current position coordinate is ðxi;yiÞ. Let the coordinate
of the target point is ðxg ;ygÞ. Then, the actual cost gðnÞ is calculated
by the following formula:

gðnÞ¼
Xp�1

k¼1

dðkÞ (7)

Where, p is the number of grids from the starting grid to the current
grid (p � 1); dðkÞ is the Euclidean distance from the k th grid to the
kþ 1 th grid. Let the coordinates of the k th grid and kþ 1 th grid be
ðxk;ykÞ, ðxkþ1; ykþ1Þ respectively, then dðkÞ can be expressed as:

dðkÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xkþ1Þ2 þ ðyk � ykþ1Þ2

q
(8)

hðnÞ is calculated by Manhattan distance, and the Manhattan
distance between the current position and the target position is
expressed as:

hðnÞ¼ ��xi � xg
��þ ���yi � yg

��� (9)

In the process of radioactive source search, initially, since the
location of radioactive source is unknown to the searcher, it is
indispensable to randomly collect radiation data and feed them
into the network model to predict the location of radioactive
source. Then, the predicted source location is taken as the target
point, and A-star algorithm is used to plan the search path. Further,
the radiation data collected under the planned search path
(including the previously collected radiation data) will be input into
the CNN model to update the predicted location of source. The
process is iterated until the searcher successfully reaches the
location of source. The flow chart of radioactive source search based
on ACA algorithm is shown in Fig. 5.

4. Results and discussion

In order to verify the feasibility and high efficiency of the ACA
algorithm for source search, verification experiments were carried
Fig. 5. Flow chart of radioactive sourc
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out in open indoor environment and indoor environment with
obstacle. We also compared the number of radiation measure-
ments, the number of moving steps, and search success rate with
existing GS algorithm which is implemented by Liu et al. [17], and
extended the gradient search direction from four-neighbor to
eight-neighbor. The GS algorithm can guide the searcher to move in
the direction of rising radiation gradient. The radiation gradient is

defined as dm
dl , where dm is the change of radiation measurement

and dl is the change of the measurement position. The radiation
gradients in the eight-neighbor search directions are expressed as
ðg1;g2;g3;g4;g5;g6;g7;g8Þ; g1, g2, g3, g4, g5, g6, g7 and g8 represent
the radiation gradients in the eight-neighbor search direction. In
order to prevent the searcher from only moving in the direction of
the fastest rising radiation gradient, the radiation gradient is con-
verted into a moving probability vector, and then an adjustment
factor q is introduced to control the randomness of the next move
decision.

ðq1;q2;q3;q4;q5;q6;q7;q8Þ¼softmax
�
g1
q
;
g2
q
;
g3
q
;
g4
q
;
g5
q
;
g6
q
;
g7
q
;
g8
q

�

(10)

The larger the q value, the more random the direction of
movement will be; the smaller the q value, the greater the proba-
bility that the searcher will move to the direction where the radi-
ation gradient rises fastest. The best q value has been determined
through countless experiments: the q value is set as 0.8 in an open
indoor environment, and the q value is set as 1.6 in an indoor
environment with obstacle. In addition, in order to facilitate the
comparison with the proposed algorithm and avoid the random-
ness of the experiment, for the GS algorithm, we repeated the
experiment 100 times and chose the optimal result to compare
with the proposed algorithm.

4.1. Experiment and analysis in open indoor environment

The radiation dataset obtained by the ENSAW algorithm in
Section 2.2 is divided proportionally and then fed into the designed
network architecture (Fig. 4) for training. The curves of training
accuracy, verification accuracy, training loss and verification loss
are shown in Fig. 6. Both training accuracy and training loss have
e search based on ACA algorithm.



Fig. 6. Training curves of the network model.
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converged after 40 epochs, and the verification accuracy and veri-
fication loss are close to the training accuracy and training loss,
respectively.

In order to evaluate the performance of the network model and
analyze the prediction results, randomly select 10 different source
locations and use the ENSAW algorithm to generate radiation dose
rate values of 20 steps with 10000 new radiation data. Further, the
first three source locations with higher probability predicted by the
network model and their corresponding probabilities are statisti-
cally analyzed (Table 1). It can be seen from Table 1 that although
the prediction result may not be consistent with the actual location
of radioactive source, most of the incorrectly predicted source lo-
cations are still around the actual source location (the eight cells
adjacent to the actual cell). For example, when the actual location of
source is at S29, the incorrectly predicted locations S13 and S28 are
at the upper left corner and the left side, respectively. In addition, a
small number of prediction results seriously deviate from the actual
source location. The reason is that the network fails to extract ra-
diation features due to the influence of radiometric data, which
leads to misclassification of source location.

In order to make up for the above shortcomings, the A-star al-
gorithm is introduced to plan the searcher's walking path and guide
the direction of radiation data collection. Since the location of
Table 1
Analysis of prediction results of source parameter estimation model.

Actual source location Estimated source location Corresponding
probability

S15 S15 S14 S90 95.0% 0.5% 0.5%
S29 S29 S13 S28 88.9% 1.4% 1.3%
S43 S43 S42 S27/S59 92.4% 0.9% 0.8%
S57 S57 S72 S41 91.3% 1.5% 1.2%
S71 S71 S86 S56 93.1% 1.9% 1.1%
S85 S85 S86 S70 91.2% 1.6% 1.5%
S99 S99 S114 S84 91.3% 2.4% 1.3%
S113 S113 S98 S114 87.2% 4.2% 2.4%
S127 S127 S128 S143 91.6% 1.4% 1.2%
S141 S141 S140 S142 90.0% 2.3% 1.9%
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radioactive source is unknown at the beginning of the search,
random radiation data collection is required to estimate the di-
rection of source. Then, source location is estimated every four
radiation data acquisitions in the occupancy grid map, so that the
searcher can adjust the search direction in time and conduct a
gradual search towards the source location. Fig. 7 shows the com-
parison experiment of ACA algorithm and GS algorithm for source
search in open indoor environment. Table 2 shows the estimated
source location of source parameter estimation model during the
search process. In plot (a) of Fig. 7, the first three estimation results
of the source parameter estimation model of the ACA algorithm are
all at or around the actual source location. The walking path is
planned by the A-star algorithm so that the searcher that collects
radiation data at a fixed step distance of 0.5 m moves towards the
source location. However, an error occurs at the fourth estimate,
causing the searcher to move away from the actual source location.
The fifth and subsequent estimates are all correct. In the end, the
radioactive source is successfully found.

In plot (b) of Fig. 7, although there is a large deviation between
the estimated source location for the first time and the actual
source location, the second estimation result is the actual source
location, which enables the searcher to adjust the search direction
in time and plan the optimal path. The results of the fourth and
subsequent estimates are all correct, and the radioactive source is
also successfully searched in the end. In contrast, the GS algorithm
needs to collect radiation data in eight directions for each moving
step and make a decision through formula (10) to select the next
moving direction, which will lead to low search efficiency.
Although both the ACA algorithm and the GS algorithm can suc-
cessfully search for radioactive source in the end, the average
number of radiation measurements of the ACA algorithm is only
2.1% of that of the GS algorithm. In addition, the average number of
moving steps of the ACA algorithm is only 33.2% of that of the GS
algorithm.

4.2. Experiment and analysis in indoor environment with obstacle

In Section 4.1, source search experiments in an open indoor
environment are carried out using the ACA algorithm. However,
there may be concrete wall that blocks the radiation signal during
the indoor source search process, which may interfere with the
source location estimation. Considering an L-shaped concrete wall
in an indoor environment, similarly, the detector acquisition plane
is represented by an occupancy grid map. Further, the radiation
dose rate distribution maps at the height of 1 m above the ground
for different source locations are approximated by the Geant4
program based on the MC method (Fig. 8).

Similar to Section 4.1, the ENSAW algorithm is used to collect
radiation data of 20 steps in the occupancy grid map, and 600,000
radiation data are collected for the radiation dose rate distribution
maps of different source locations as the data set. The data set is
divided according to the same ratio and then fed into the same
network architecture for training. The training results are shown in
Fig. 9. The training accuracy and training loss have converged
approximately after 40 epochs, and the verification accuracy and
verification loss are close to the training accuracy and training loss,
respectively, indicating that the source parameter estimation
model is also suitable for estimating the source location in the in-
door environment with obstacles.

In the same way, 10 different radiation source locations were
selected, and then 10,000 new radiation data of 20 steps were
randomly generated using the ENSAW algorithm to evaluate the
performance of the network model and analyze the prediction re-
sults. Next, the first three source locations with higher probability
predicted by the network model and their corresponding



Fig. 7. Comparison experiment of radioactive source search between ACA algorithm (magenta) and GS algorithm (green). (a) The radioactive source is located in the upper right
corner, and the initial position of the searcher is in the lower left corner. (b) The radioactive source is located in the lower right corner, and the initial position of the searcher is in
the upper left corner. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 2
Estimated source location of ACA algorithm.

No. Actual source location Estimated source location

1st 2nd 3rd 4th 5th 6th 7th 8th

(a) S29 S15 S29 S45 S89 S29 S29 S29 S29
(b) S132 S14 S132 S104 S132 S132 S132 / /

Fig. 8. Radiation dose rate distribution map of radioactive source (S116) at the height
of 1 m above the ground (dose rate: mGy/s).

Fig. 9. Training curves of the network model.

Table 3
Analysis of prediction results of source parameter estimation model.

Actual source location Estimated source location Corresponding
probability

S15 S15 S30/S75 S57 94.0% 1.2% 0.7%
S29 S29 S28 S30 87.2% 2.9% 2.1%
S43 S43 S28 S42 89.2% 2.1% 1.9%
S57 S57 S42 S12 96.9% 0.6% 0.4%
S71 S71 S86 S85 93.6% 1.1% 0.7%
S85 S85 S70/S100 S99 96.1% 0.7% 0.4%
S99 S99 S84/S100 S114 94.2% 1.1% 0.8%
S113 S113 S98 S127 86.9% 3.1% 2.2%
S127 S127 S126 S128 89.9% 3.4% 2.1%
S141 S141 S140 S127 88.6% 3.2% 1.7%
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probabilities are statistically analyzed (Table 3). It can be seen from
Table 3 that although the indoor concrete wall will block the ra-
diation signal, most of the wrongly estimated source locations are
still around the actual source location by source parameter esti-
mation model. For example, when the radioactive source is located
at location S29, the wrongly estimated locations S28 and S30 are on
its left and right, respectively. In addition, a small number of pre-
diction results seriously deviate from the actual location of radio-
active source. This is mainly related to the fact that the radiation
signal is blocked by concrete wall and the location of radiation
measurements, so that the network fails to extract radiation fea-
tures, which leads to misclassification of source location. Thus, the
A-star algorithm is introduced to plan the searcher's walking path
and guide the direction of radiation data collection. In addition,
during the search process, the A-star algorithm can avoid obstacles
and make optimal path planning between the current position and
the target position.

In order to prove the feasibility and efficiency of the ACA algo-
rithm in indoor environment with obstacles, a series of source
search simulation experiments have been carried out. Fig. 10 shows
the source search process of ACA algorithm and GS algorithm.
Table 4 shows the location estimation results of the source
parameter estimation model of ACA algorithm. In plot (a) of Fig. 10,
3036
the radioactive source is located inside the wall, and the initial
position of the searcher is in the lower left corner. The first esti-
mation result of the source parameter estimation model was close
to the actual source location. Then, with the estimated source
location as the target, path planningwasmade between the current
state and the target by A-star algorithm, and radiation data was
collected with a fixed step distance. However, the second



Fig. 10. Comparison experiment of ACA algorithm (magenta) and GS algorithm (green) for radioactive source search. (a) The radiation source is located inside the wall, and the
initial position of the searcher is in the lower left corner. (b) The radiation source is located outside the wall, and the initial position of the searcher is inside the wall. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 4
Estimated source location of ACA algorithm.

No. Actual source location Estimated source location

1st 2nd 3rd 4th 5th 6th 7th 8th

(a) S130 S101 S27 S130 S130 S130 S130 S130 S130
(b) S94 S109 S64 S94 S78 S94 S94 S94 /
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estimation result deviated severely from the actual source location,
resulting in the failure of optimal path planning. Subsequently, the
location of sourcewas correctly estimated in the third estimate, and
the direction of movement was corrected in time. Ultimately, the
searcher successfully found the radioactive source using the ACA
algorithm with 62 moving steps and 31 radiation measurements.
On the contrary, the GS algorithm eventually fails to search the
source due to being trapped in a local optimum.

In plot (b) of Fig. 10, the radiation source is located outside the
wall, and the initial position of the searcher is inside the wall. The
source parameter estimation model of ACA algorithm only deviates
from the actual source location for the second estimate, and the rest
of the estimation results are all correct or around the actual source
location. Also, the A-star algorithm is used to plan the optimal path
between the current position and the target position. In the end,
the searcher successfully arrived at the location of radioactive
source with 52 moving steps and 26 radiation measurements.
However, the GS algorithmmakes the searcher always move on the
inner side of thewall and collect radiation data, so that the searcher
fails to go around the wall and is finally trapped a local optimum.
The experimental results show that in the indoor environment with
obstacle, the ACA algorithm is significantly better than the GS al-
gorithm in the number of moving steps, the number of radiation
measurements and the success rate of source search.
5. Conclusion

In this paper, a novel automatic search algorithm (ACA algo-
rithm) for radioactive source based on CNN and A-star algorithm is
proposed to solve the problem of low efficiency of mobile robots
searching for radioactive source in indoor environments without
and with obstacles. Through an iterative process of source location
estimation and path planning, the progressive search for radioac-
tive source is realized. The feasibility and effectiveness of ACA al-
gorithm are verified by comparative experiments in approximate
real indoor scenes. The experimental results show that in the open
indoor environment, the average number of radiation measure-
ments and the average number of moving steps of the ACA algo-
rithm are 2.1% and 33.2% of the GS algorithm, respectively. In the
indoor environment with obstacles, the GS algorithmwill fall into a
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local optimum due to the wall blocking the radiation signal,
resulting in the failure of the source search, while the ACA algo-
rithm is significantly better than the GS algorithm in the number of
moving steps, the number of radiation measurements, and the
success rate of source search. However, the proposed algorithm
may fail to search for source in complex geometric environments
due to the limitations of the source parameter estimation model. In
the future, we would like to conduct experiments in more complex
indoor environments including terrain constraints to improve the
proposed algorithm. In particular, when the search area is large
enough, multiple robots can be employed to search for radioactive
source to further improve search efficiency [33]. In addition, during
the source search process, the radiation dose rate map in the region
or space can be reconstructed or inverted to better solve the
problem of automatic search for radioactive source.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This research was funded by the National Natural Science
Foundation of China (No.12205245, No.12175187), Natural Science
Foundation of Sichuan Province (No. 2023NSFSC1437), Research
Fund of Southwest University of Science and Technology (No.
22zx7109).

References

[1] IAEA Incident and Trafficking Database (ITDB), Incidents of nuclear and other
radioactive material out of regulatory control, Available online: https://www.
iaea.org/sites/default/fifiles/22/01/itdb-factsheet.pdf. (Accessed 17 November
2022).

[2] A.H.W. Liu, Simulation and Implementation of Distributed Sensor Network for
Radiation Detection, California Institute of Technology, 2010.

[3] N.S.V. Rao, M. Shankar, J.C. Chin, D.K. Yau, S. Srivathsan, S.S. Iyengar, Identi-
fication of Low-Level Point Radiation Sources Using a Sensor Network. 2008
International Conference on Information Processing in Sensor Networks
(IPSN), IEEE, 2008, pp. 493e504, 2008.

[4] J.W. Howse, L.O. Ticknor, K.R. Muske, Least squares estimation techniques for

https://www.iaea.org/sites/default/fifiles/22/01/itdb-factsheet.pdf
https://www.iaea.org/sites/default/fifiles/22/01/itdb-factsheet.pdf
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref2
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref2
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref3
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref3
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref3
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref3
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref3
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref4


J. Huo, X. Hu, J. Wang et al. Nuclear Engineering and Technology 55 (2023) 3030e3038
position tracking of radioactive sources, Automatica 37 (11) (2001)
1727e1737.

[5] Y. Huang, J. Benesty, G.W. Elko, R.M. Mersereati, Real-time passive source
localization: a practical linear-correction least-squares approach, IEEE Trans.
Speech Audio Process. 9 (8) (2001) 943e956.

[6] A. Gunatilaka, B. Ristic, R. Gailis, On Localisation of a Radiological Point Source.
2007 Information, Decision and Control, IEEE, 2007, pp. 236e241, 2007.

[7] E. Bai, A. Heifetz, P. Raptis, S. Dasgupta, R. Mudumbai, Maximum likelihood
localization of radioactive sources against a highly fluctuating background,
IEEE Trans. Nucl. Sci. 62 (6) (2015) 3274e3282.

[8] H.E. Baidoo-Williams, Maximum Likelihood Localization of Radiation Sources
with Unknown Source Intensity, 2016 arXiv preprint arXiv:1608.00427.

[9] J. Huo, M. Liu, K.A. Neusypin, H. Liu, M. Guo, Y. Xiao, Autonomous search of
radioactive sources through mobile robots, Sensors 20 (12) (2020) 3461.

[10] Y. Liu, Y. Xuan, D. Zhang, S. Zou, Localizing unknown radiation sources by
unscented particle filtering based on divide-and-conquer sampling, J. Nucl.
Sci. Technol. (2022) 1e13, 2022.

[11] W. Gao, W. Wang, H. Zhu, G. Huang, D. Wu, Z. Du, Robust radiation sources
localization based on the peak suppressed particle filter for mixed multi-
modal environments, Sensors 18 (11) (2018) 3784.

[12] M.R. Morelande, B. Ristic, Radiological source detection and localisation using
Bayesian techniques, IEEE Trans. Signal Process. 57 (11) (2009) 4220e4231.

[13] A. West, I. Tsitsimpelis, M. Licata, A. Jazbec, L. Snoj, M.J. Joyce, B. Lennox, Use of
Gaussian process regression for radiation mapping of a nuclear reactor with a
mobile robot, Sci. Rep. 11 (1) (2021) 1e11.

[14] X. Xie, J. Cai, Z. Tang, The reconstruction of 3D radiation field based on sparse
measurement data, Ann. Nucl. Energy 179 (2022), 109391.

[15] H. Tomita, S. Hara, A. Mukai, K. Yamagishi, H. Ebi, K. Shimazoe, Y. Tamura,
H. Woo, H. Takahashi, H. Asama, F. Ishida, E. Takada, J. Kawarabayashi,
K. Tanabe, K. Kamada, Path-planning system for radioisotope identification
devices using 4p gamma imaging based on random forest analysis, Sensors 22
(12) (2022) 4325.

[16] M.S. Lee, M. Hanczor, J. Chu, Z. He, N. Michael, R. Whittaker, 3-d Volumetric
Gamma-Ray Imaging and Source Localization with a Mobile Robot, 2018 arXiv
preprint arXiv:1802.06072.

[17] Z. Liu, S. Abbaszadeh, Double Q-learning for radiation source detection, Sen-
sors 19 (4) (2019) 960.

[18] A. Fathi, S.F. Masoudi, Lost gamma source detection algorithm based on
convolutional neural network, Nucl. Eng. Technol. 53 (11) (2021) 3764e3771.
3038
[19] Y. Zhao, B. Chen, X.H. Wang, Z. Zhu, Y. Wang, G. Cheng, Y. Liu, A deep rein-
forcement learning based searching method for source localization, Inf. Sci.
588 (2022) 67e81.

[20] P. Proctor, C. Teuscher, A. Hecht, M. Osi�nski, Proximal policy optimization for
radiation source search, Journal of Nuclear Engineering 2 (4) (2021) 368e397.

[21] J. Chen, C. Tan, R. Mo, H. Zhang, G. Cai, H. Li, Research on path planning of
three-neighbor search A* algorithm combined with artificial potential field,
Int. J. Adv. Rob. Syst. 18 (3) (2021), 17298814211026449.

[22] Y. Ji, Y. Zhao, B. Chen, Z. Zhu, Y. Liu, H. Zhu, S. Qiu, Source searching in un-
known obstructed environments through source estimation, target determi-
nation, and path planning, Build. Environ. 221 (2022), 109266.

[23] S. Agostinelli, J. Allison, K.A. Amako, J. Apostolakis, H. Araujo, P. Arce, Geant4
Collaboration., GEANT4da simulation toolkit, Nucl. Instrum. Methods Phys.
Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (3) (2003) 250e303.

[24] J.F. Briesmeister, MCNPTM-A General Monte Carlo N-Particle Transport Code,
in: Version 4C, LA-13709-M, vol. 2, Los Alamos National Laboratory, 2000.

[25] A. Ferrari, J. Ranft, P.R. Sala, A. Fass�o, FLUKA: A Multi-Particle Transport Code
(Program Version 2005), Cern, 2005.

[26] M. Bousquet-M�elou, On the importance sampling of self-avoiding walks,
Combinator. Probab. Comput. 23 (5) (2014) 725e748.

[27] X. Hu, J. Huo, J. Wang, L. Hu, Y. Xiao, Research on a localization method of
multiple unknown gamma radioactive sources, Ann. Nucl. Energy 177 (2022),
109302.

[28] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Commun. ACM 60 (6) (2017) 84e90.

[29] K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale
Image Recognition, 2014 arXiv preprint arXiv:1409.1556.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, J. Mach.
Learn. Res. 15 (1) (2014) 1929e1958.

[31] N.S.V. Rao, On performance of path planning algorithms in unknown terrains,
ORSA J. Comput. 4 (2) (1992) 218e224.

[32] N.S.V. Rao, S. Kareti, W. Shi, S.S. Iyengar, Robot Navigation in Unknown Ter-
rains: Introductory Survey of Non-heuristic Algorithms, Oak Ridge National
Lab., TN (United States), 1993.

[33] M. Ling, J. Huo, G.V. Moiseev, L. Hu, Y. Xiao, Multi-robot collaborative radio-
active source search based on particle fusion and adaptive step size, Ann. Nucl.
Energy 173 (2022), 109104.

http://refhub.elsevier.com/S1738-5733(23)00243-7/sref4
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref4
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref4
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref5
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref5
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref5
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref5
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref6
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref6
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref6
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref7
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref7
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref7
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref7
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref8
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref8
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref9
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref9
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref10
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref10
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref10
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref10
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref11
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref11
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref11
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref12
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref12
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref12
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref13
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref13
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref13
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref13
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref14
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref14
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref15
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref15
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref15
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref15
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref15
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref16
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref16
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref16
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref17
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref17
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref18
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref18
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref18
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref19
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref19
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref19
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref19
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref20
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref20
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref20
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref20
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref21
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref21
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref21
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref21
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref22
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref22
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref22
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref23
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref23
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref23
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref23
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref23
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref24
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref24
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref25
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref25
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref25
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref26
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref26
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref26
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref26
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref27
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref27
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref27
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref28
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref28
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref28
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref29
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref29
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref30
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref30
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref30
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref30
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref31
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref31
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref31
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref32
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref32
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref32
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref33
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref33
http://refhub.elsevier.com/S1738-5733(23)00243-7/sref33

