• Title/Summary/Keyword: Negative resonance

Search Result 309, Processing Time 0.03 seconds

Piezoelectric shunt damping by synchronized switching on negative capacitance and adaptive voltage sources

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chen, JinJin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.396-411
    • /
    • 2014
  • Synchronized switch damping (SSD) techniques have recently been developed for structural vibration control using piezoelectric materials. In these techniques, piezoelectric materials are bonded on the vibrating structure and shunted by a network of electrical elements. These piezoelectric materials are switched according to the amplitude of the excitation force to damp vibration. This paper presents a new SSD technique called 'synchronized switch damping on negative capacitance and adaptive voltage sources' (SSDNCAV). The technique combines the phenomenon of capacitance transient charging and electrical resonance to effectively dampen the structural vibration. Also, the problem of stability observed in the previous SSD techniques is effectively addressed by adapting the voltage on the piezoelectric patch according to the vibration amplitude of the structure. Analytical expressions of vibration attenuation at the resonance frequency are derived, and the effectiveness of this new technique is demonstrated, for the control of a resonant cantilever beam with bonded piezoelectric patches, by comparing with SSDI, SSDVenh, and SSDNC techniques. Theoretical predictions and experimental results show the remarkable vibration damping capability of SSDNCAV technique, which was better than the previous SSD techniques. The broadband vibration control capabilities of SSDNCAV technique are also demonstrated, which exceed those of previous SSD techniques.

The Effect of Substrate DC Bias on the Low -Temperature Si homoepitaxy in a Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (초고진공 전자 사이클로트론 화학 기상 증착 장치에 의한 저온 실리콘 에피 성장에 기판 DC 바이어스가 미치는 영향)

  • 태흥식;황석희;박상준;윤의준;황기웅;송세안
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.501-506
    • /
    • 1993
  • The spatial potential distribution of electron cyclotron resonance plasma is measured as a function of tehsubstrate DC bias by Langmuir probe method. It is observed that the substrate DC bias changes the slope of the plasma potential near the subsrate, resulting in changes in flux and energy of the impinging ions across plasma $_strate boundary along themagnetric field. The effect of the substrate DC bias on the low-temperature silicon homoepitaxy (below $560^{\circ}C$) is examine dby in situ reflection high energy electron diffraction (RHEED), cross-section transmission electron microscopy (XTEM),plan-view TEM and high resolution transmision electron microscopy(HRTEM). While the polycrystalline silicon layers are grow withnegative substrate biases, the single crystaline silicon layers are grown with negative substrate biases, the singel crystalline silicon layers are grown with positive substrate biases. As the substrate bias changes form negative to positive values, the growth rate decreases. It is concluded that the control of the ion energy during plasma deposition is very important in silicon epitaxy at low temperatures below $560^{\circ}C$ by UHV-ECRCVD.VD.

  • PDF

Characterization of Silver Nanoparticles Synthesized by Using Marine Isolate Streptomyces albidoflavus

  • Prakasham, Reddy Shetty;Kumar, Buddana Sudheer;Kumar, Yannam Sudheer;Shankar, Guntuku Girija
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.614-621
    • /
    • 2012
  • Silver nanoparticles production by the green chemistry approach was investigated using an isolated marine actinomycetes strain. The isolated strain was identified as Streptomyces albidoflavus based on chemotaxonomic and ribotyping properties. The strain revealed production of silver nanoparticles both extracellular and intracellularly. Surface Plasmon Resonance analysis with the function of time revealed that particle synthesis by this strain is reaction time dependent. The produced particles were spherical shaped and monodispersive in nature and showed a single surface plasmon resonance peak at 410 nm. Size distribution histograms indicated production of 10-40-nm-size nanoparticles with a mean size of 14.5 nm. FT-IR spectra of nanopartilces showed N-H, C-H, and C-N stretching vibrations, denoting the presence of amino acid/peptide compounds on the surface of silver nanoparticles produced by S. albidoflavus. Synthesized nanoparticles revealed a mean negative zeta potential and electrophoretic mobility of -8.5 mV and -0.000066 $cm^2/Vs$, respectively. The nanoparticles produced were proteinaceous compounds as capping agents with -8.5 mV zeta potential and revealed antimicrobial activity against both Gram-negative and -positive bacterial strains. Owing to their small size, these particles have greater impact on industrial application spectra.

Can indirect magnetic resonance arthrography be a good alternative to magnetic resonance imaging in diagnosing glenoid labrum lesions?: a prospective study

  • Mardani-Kivi, Mohsen;Alizadeh, Ahmad;Asadi, Kamran;Izadi, Amin;Leili, Ehsan Kazemnejad;arzpeyma, Sima Fallah
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.3
    • /
    • pp.182-187
    • /
    • 2022
  • Background: This study was designed to evaluate and compare the diagnostic value of magnetic resonance imaging (MRI) and indirect magnetic resonance arthrography (I-MRA) imaging with those of arthroscopy and each other. Methods: This descriptive-analytical study was conducted in 2020. All patients who tested positive for labrum lesions during that year were included in the study. The patients underwent conservative treatment for 6 weeks. In the event of no response to conservative treatment, MRI and I-MRA imaging were conducted, and the patients underwent arthroscopy to determine their ultimate diagnosis and treatment plan. Imaging results were assessed at a 1-week interval by an experienced musculoskeletal radiologist. Image interpretation results and arthroscopy were recorded in the data collection form. Results: Overall, 35 patients comprised the study. Based on the kappa coefficient, the results indicate that the results of both imaging methods are in agreement with the arthroscopic findings, but the I-MRA consensus rate is higher than that of MRI (0.612±0.157 and 0.749±0.101 vs. 0.449±0.160 and 0.603±0.113). The sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of MRI in detecting labrum tears were 77.77%, 75.00%, 91.30%, 50.00%, and 77.14%, respectively, and those of I-MRA were 88.88%, 75.00%, 92.30%, 66.66%, and 85.71%. Conclusions: Here, I-MRA showed higher diagnostic value than MRI for labral tears. Therefore, it is recommended that I-MRA be used instead of MRI if there is an indication for potential labrum lesions.

Negative myoclonus associated with tramadol use

  • Bae, Seong Yoon;Lee, Se-Jin
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.4
    • /
    • pp.329-331
    • /
    • 2020
  • Negative myoclonus (NM) is a shock-like jerky involuntary movement caused by a sudden, brief interruption of tonic muscle contraction. NM is observed in patients diagnosed with epilepsy, metabolic encephalopathy, and drug toxicity and in patients with brain lesions. A 55-year-old man presented with NM in both his arms and neck. He has taken medications containing tramadol at a dose of 80-140 mg/day for 5 days due to common cold. He had no history of seizures. Acute lesions were not observed during magnetic resonance imaging, and abnormal findings in his laboratory tests were not noted. His NM resolved completely after the discontinuation of tramadol and the oral administration of clonazepam. Our case report suggests that tramadol can cause NM in patients without seizure history or metabolic disorders, even within its therapeutic dose.

Left-Handedness 특성 Metamaterial 구조의 마이크로파 부품과 안테나 개발에의 적용 기술

  • Gang, Seung-Taek
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • 본고를 통해 초고주파 이론과 공학 분야는 물론 물리학, 재료공학의 기초 학문 분야에서도 지대한 관심을 모으고 있는 Metamaterial(MTM) 구조에 대해 조명하고자 한다. 먼저 MTM의 핵심이라고 할 수 있는 Left-Handedness(LH) 왼손 전파 법칙과 LH 발생 재질인 Double Negative(DNG) 재질에서의 전파 특성을 상대 유전율과 상대 투자율 평면에서 확인하고, 일반 매질인 Double Positive(DPS)형인 오른손 전파 법칙 Right-Handedness(=RH) 매질과의 결합(Composite Right-and Left-Hnaded=CRLH)에서 얻어지는 특징들을 살펴본다. 특히 DPS와 DNC의 결합에서 얻을 수 있는 음의 공진과 0차 공진(Zero-Order Resonance)을 언급하고 ZOR을 응용한 RF 부품의 소형화와 특성 개선사례를 소개한다. 또한, 안테나와 전자파 산란 특성에 MTM의 특수한 성질을 이용하여, 크기를 줄이거나 표면파를 억제하거나 혹은 방사 개구를 확대 또는 렌즈 특성을 얻어낸 사례도 언급된다 그리고 LH 특성은 아니지만 MTM 계열인 ENG(Epsilon Negative), MNG(Mu Negative), ENZ(Epsilon Near Zero)를 응용한 예들을 보이고, MTM 관점에서 FSS(Frequency Selective Surface )의 특성을 논의하고, 그간에 발표된 대표적 MTM 연구 결과에 대한 소개를 마치고자 한다.

High-Gain Fabry-Pérot Cavity Antenna with Planar Metamaterial Superstrate for Wibro Base Station Antennas (평판형 메타 물질로 구성된 상부 덮개를 갖는 와이브로 기지국용 고 이득 Fabry-Pérot 공진기 안테나)

  • Kim, Dong-Ho;Choi, Jae-Ick
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1367-1374
    • /
    • 2008
  • A new high-gain Fabry-$P{\acute{e}}rot$ cavity antenna for wireless broadband internet(Wibro) base station antennas, which is covered with metamaterial superstrate presenting simultaneous negative values of permittivity and permeability, is proposed. To facilitate the fabrication process using the printed circuit board(PCB) technology of today, a new planar-type metamaterial superstrate is designed, which shows negative and low positive values of a refractive index near the Wibro service frequency band. And the principle of antenna gain enhancement is analyzed from the two different view points of effectively low refractive index and of the Fabry-$P{\acute{e}}rot$ resonance condition. Single square patch antenna is used as a feeder. The separation distance is determined by considering the reflection phases of the metamaterial superstrate and the substrate satisfying Fabry-$P{\acute{e}}rot$ resonance condition, respectively. Comparison between the prediction and the measurement shows good agreement, which verifies the validity of our design approach.

Prediction of Tumor Progression During Neoadjuvant Chemotherapy and Survival Outcome in Patients With Triple-Negative Breast Cancer

  • Heera Yoen;Soo-Yeon Kim;Dae-Won Lee;Han-Byoel Lee;Nariya Cho
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.626-639
    • /
    • 2023
  • Objective: To investigate the association of clinical, pathologic, and magnetic resonance imaging (MRI) variables with progressive disease (PD) during neoadjuvant chemotherapy (NAC) and distant metastasis-free survival (DMFS) in patients with triple-negative breast cancer (TNBC). Materials and Methods: This single-center retrospective study included 252 women with TNBC who underwent NAC between 2010 and 2019. Clinical, pathologic, and treatment data were collected. Two radiologists analyzed the pre-NAC MRI. After random allocation to the development and validation sets in a 2:1 ratio, we developed models to predict PD and DMFS using logistic regression and Cox proportional hazard regression, respectively, and validated them. Results: Among the 252 patients (age, 48.3 ± 10.7 years; 168 in the development set; 84 in the validation set), PD was occurred in 17 patients and 9 patients in the development and validation sets, respectively. In the clinical-pathologic-MRI model, the metaplastic histology (odds ratio [OR], 8.0; P = 0.032), Ki-67 index (OR, 1.02; P = 0.044), and subcutaneous edema (OR, 30.6; P = 0.004) were independently associated with PD in the development set. The clinical-pathologic-MRI model showed a higher area under the receiver-operating characteristic curve (AUC) than the clinical-pathologic model (AUC: 0.69 vs. 0.54; P = 0.017) for predicting PD in the validation set. Distant metastases occurred in 49 patients and 18 patients in the development and validation sets, respectively. Residual disease in both the breast and lymph nodes (hazard ratio [HR], 6.0; P = 0.005) and the presence of lymphovascular invasion (HR, 3.3; P < 0.001) were independently associated with DMFS. The model consisting of these pathologic variables showed a Harrell's C-index of 0.86 in the validation set. Conclusion: The clinical-pathologic-MRI model, which considered subcutaneous edema observed using MRI, performed better than the clinical-pathologic model for predicting PD. However, MRI did not independently contribute to the prediction of DMFS.

A Virtual RLC Active Damping Method for LCL-Type Grid-Connected Inverters

  • Geng, Yiwen;Qi, Yawen;Zheng, Pengfei;Guo, Fei;Gao, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1555-1566
    • /
    • 2018
  • Proportional capacitor-current-feedback active damping (AD) is a common damping method for the resonance of LCL-type grid-connected inverters. Proportional capacitor-current-feedback AD behaves as a virtual resistor in parallel with the capacitor. However, the existence of delay in the actual control system causes impedance in the virtual resistor. Impedance is manifested as negative resistance when the resonance frequency exceeds one-sixth of the sampling frequency ($f_s/6$). As a result, the damping effect disappears. To extend the system damping region, this study proposes a virtual resistor-inductor-capacitor (RLC) AD method. The method is implemented by feeding the filter capacitor current passing through a band-pass filter, which functions as a virtual RLC in parallel with the filter capacitor to achieve positive resistance in a wide resonance frequency range. A combination of Nyquist theory and system close-loop pole-zero diagrams is used for damping parameter design to obtain optimal damping parameters. An experiment is performed with a 10 kW grid-connected inverter. The effectiveness of the proposed AD method and the system's robustness against grid impedance variation are demonstrated.

An ESR Study of Amino Acid and Protein Free Radicals in Solution Part Ⅲ. ESR Study of Lysozyme Free Radical Produced by $Ti-H_2O_2$ Flow System (용액에서의 아미노산 및 단백질 자유기에 관한 ESR 연구 제3보 $Ti-H_2O_2$ Flow System으로 만든 Lysozyme 자유기의 ESR 연구)

  • Hong, Sun-Joo;Piette, L.H.
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.4
    • /
    • pp.177-181
    • /
    • 1971
  • Free radicals of lysozyme produced by $Ti-H_2O_2$ system were studied in aqueous solution at room temperature using ESR with a continuous flow-mixing. The spectra, each consisting of a doublet with 5.5 G splitting and a broad resonance covering 80 G splitting are closely similar in shape to that for solid irradiated in vacuum at $77^{\circ}K$ and observed at room temperature immediately on warming. The result is assumed to indicate that the secondary protein radical components formed within 0.01 second, dead time of the mixing chamber, and initiated by hydrogen atom abstraction at ${\alpha}$-carbon atom of peptide chain in liquid solution at room temperature are identical to those resulting from the initial formation of a mixture of positive holes and negative ions by ionization processes as well as radical fragments by the rupture of chemical bonds in the solid during similar time at the same temperature. A broad resonance is observed with considerable amplitude on the high field side of the doublet, which is quite dissimilar to the spectra of irradiated solid lysozyme. This resonance was tentatively attributed to the polypeptide free radical in which unpaired electrons are localized on side chain.

  • PDF