• Title/Summary/Keyword: Negative quadrant dependence

Search Result 23, Processing Time 1.648 seconds

A Family of Extended NQD Bivariate Distributions with Continuous Marginals

  • Ryu, Dae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.85-95
    • /
    • 2012
  • In this paper we define extended negative quadrant dependence which is weaker negative quadrant dependence and show conditions for having extended negative quadrant dependence property. We also derive generalized Farlie-Gumbel-Morgenstern uniform distributions that possess the extended quadrant dependence property.

A NEW FAMILY OF NEGATIVE QUADRANT DEPENDENT BIVARIATE DISTRIBUTIONS WITH CONTINUOUS MARGINALS

  • Han, Kwang-Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.795-805
    • /
    • 2011
  • In this paper, we study a family of continuous bivariate distributions that possesses the negative quadrant dependence property and the generalized negatively quadrant dependent F-G-M copula. We also develop the partial ordering of this new parametric family of negative quadrant dependent distributions.

ON THE LIMIT BEHAVIOR OF EXTENDED NEGATIVE QUADRANT DEPENDENCE

  • Baek, Jong-Il;Lee, Gil-Hwan
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.689-699
    • /
    • 2010
  • We discuss in this paper the notions of extended negative quadrant dependence and its properties. We study a class of bivariate uniform distributions having extended negative quadrant dependence, which is derived by generalizing the uniform representation of a well-known Farlie-Gumbel-Morgenstern distribution. Finally, we also study the limit behavior on the extended negative quadrant dependence.

On Complete Convergence for Weighted Sums of Pairwise Negatively Quadrant Dependent Sequences

  • Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.247-256
    • /
    • 2012
  • In this paper we prove the complete convergence for weighted sums of pairwise negatively quadrant dependent random variables. Some results on identically distributed and negatively associated setting of Liang and Su (1999) are generalized and extended to the pairwise negative quadrant dependence case.

On the Negative Quadrant Dependence in Three Dimensions

  • Ko, Mi-Hwa;Kim, Tae-Sung
    • Honam Mathematical Journal
    • /
    • v.25 no.1
    • /
    • pp.117-127
    • /
    • 2003
  • In this note we perform an extreme point analysis on two natural definitions of negative quadrant dependence of three random variables and examine how different these two notions of dependence. We also characterize some special distributions which are both negatively lower orthant dependent and negatively upper orthant dependent.

  • PDF

THE ALMOST SURE CONVERGENCE OF WEIGHTED AVERAGES UNDER NEGATIVE QUADRANT DEPENDENCE

  • Ryu, Dae-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.885-893
    • /
    • 2009
  • In this paper we study the strong law of large numbers for weighted average of pairwise negatively quadrant dependent random variables. This result extends that of Jamison et al.(Convergence of weight averages of independent random variables Z. Wahrsch. Verw Gebiete(1965) 4 40-44) to the negative quadrant dependence.

  • PDF