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A NEW FAMILY OF NEGATIVE QUADRANT
DEPENDENT BIVARIATE DISTRIBUTIONS WITH

CONTINUOUS MARGINALS

Kwang-Hee Han*

Abstract. In this paper, we study a family of continuous bivari-
ate distributions that possesses the negative quadrant dependence
property and the generalized negatively quadrant dependent F-G-M
copula. We also develop the partial ordering of this new parametric
family of negative quadrant dependent distributions.

1. Introduction

In statistical analysis, the assumption that random variables are in-
dependent is seldom valid in practice. For example, two components
in a reliability structure may share the reverse load or are subjected to
the reverse set of stresses. This will tend to cause two lifetime random
variables to be negatively dependent.

In other words, our consideration to dependence structures for ran-
dom variables are aroused.

Random variables X and Y are called negatively quadrant depen-
dent(NQD) if

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y)

or, equivalently,

P (X > x, Y > y) ≤ P (X > x)P (Y > y)

for all x and y. This notion was introduced by Lehmann(1965).
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Negative quadrant dependence is shown to be a stronger notion of
dependence than negative (Pearson) correlation but weaker than the
”negative association” introduced by Joag-Dev and Proschan(1983).

Negative quadrant dependence is a qualitative form of negative de-
pendence and indicates whether or not a pair of random variables ex-
hibits negative dependence. However, for many purposes, in addition to
the knowledge of the nature of negative dependence, it is also important
to know the degree of negative quadrant dependence.

Ahmed et al.(1979) have studied very extensively the partial ordering
of positive quadrant dependence which permits us to compare pairs of
positive quadrant dependent bivariate random variables of interest with
specified marginals as to their degree of positive quadrant dependence.
Quite in the same spirit, Ebrahimi(1982) studied the degree of negative
quadrant dependence.

Lai and Xie(2000) showed conditions for having positive quadrant
dependence and studied a class of bivariate uniform distributions hav-
ing positive quadrant dependence property by generalizing the uniform
representation of a well-known Farlie-Gumbel-Morgenstern distribution.
By a simple transformation, they also obtained families of bivariate dis-
tributions with pre-specified marginals. In Section 2, quite in the same
spirit of Lai and Xie(2000), we study a family of continuous bivariate
distributions that possesses the negative quadrant dependence and in
Section 3 we consider a generalized Farlie-Gumbel-Morgenstern copula
having negative quadrant dependence property. In Section 4, we also
discuss the negative quadrant dependence ordering of the new negative
quadrant dependent family.

In particular, we extend the notions of Lai and Xie(2000) to the
negative quadrant dependence.

2. Conditions for negative quadrant dependence

Let H(x, y) denote the bivariate distribution function of (X,Y ) hav-
ing continuous marginal cdfs F (x) and G(y) with marginal pdfs f(x) =
d
dxF (x) and g(y) = d

dyG(y). The joint distribution function H(x, y) may
be written as

(2.1) H(x, y) = F (x)G(y) + w(x, y) for all x and y,

where w(x, y) satisfies the following conditions:

(2.2) w(x,∞) = 0, w(∞, x) = 0, w(x,−∞) = 0, w(−∞, x) = 0
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for all x and y,

(2.3)
∂2w(x, y)

∂x∂y
+ f(x)g(y) ≥ 0 for all x and y.

From the definition of negative quadrant dependence, H(x, y) is neg-
atively quadrant dependent if and only if, for all x and y

(2.4) w(x, y) ≤ 0.

Remark 2.1. Note that (2.1) is equivalent to

(2.5) H̄(x, y) = F̄ (x)Ḡ(y) + w(x, y) for all x and y,

where H̄(x, y) = P (X > x, Y > y), F̄ (x) = P (X > x) and Ḡ(x) =
P (Y > y).

Proof.

F (x, y) = P (X > x, Y > y)
= P (X > x)− P (X > x, Y ≤ y)
= P (X > x)− P (Y ≤ y)− P (X ≤ x, Y ≤ y)
= P (X > x)− P (Y ≤ y) + H(x, y)
= F (x)G(y) + w(x, y) + F̄ (x)− 1 + F̄ (y)
= (1− F̄ (x))(1− Ḡ(y)) + w(x, y) + F̄ (x) + F̄ (y)− 1
= F̄ (x)Ḡ(y) + w(x, y).

Example 2.2. Morgenstern(1956), Farlie(1960) and Gumbel(1955)
have discussed families of bivariate distributions of the form

(2.6) H(x, y) = F (x)G(y)[1 + ρ(1− F (x))(1−G(y))], −1 ≤ ρ ≤ 1,

which is called F-G-M bivariate distribution. It is easy to verify that X
and Y are negatively quadrant dependent if −1 ≤ ρ ≤ 0. Clearly, for
−1 ≤ ρ ≤ 0,

(2.7) w(x, y) = ρF (x)G(y)(1− F (x))(1−G(y)) ≤ 0,

and (2.6) implies

(2.8) h(x, y) = f(x)g(y)[1 + ρ(1− 2F (x))(1− 2G(y))] ≥ 0,

where h(x, y) is joint probability density function of X and Y.

Remark 2.3. For−1 ≤ ρ ≤ 0, w(x, y) satisfies the conditions (2.2),(2.3)
and (2.4).
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Example 2.4. Consider a special case of the negatively quadrant
dependent F-G-M system where both marginals are exponential. The
joint distribution function is then of the form, see for example, Johnson
and Kotz(1972, pp262-263)

H(x, y) = (1− eλ1x)(1− eλ2y)[1 + ρe−λ1x−λ2y], −1 ≤ ρ ≤ 0, λ1, λ2 > 0.

Clearly, for −1 ≤ ρ ≤ 0,

w(x, y) = ρe−λ1x−λ2y(1− eλ1x)(1− eλ2y)

satisfies conditions (2.2), (2.3) and (2.4), that is, for −1 ≤ ρ ≤ 0 H(x, y)
is negatively quadrant dependent.

Remark 2.5. Note that for λ1, λ2 > 0 and −1 ≤ ρ ≤ 0

H̄(x, y) = e−λ1x−λ2y[1 + ρ(1− e−λ1x)(1− e−λ2y)].

In the following theorem we establish preservation of negative quad-
rant dependence under combination.

Theorem 2.6. Every convex combination of two bivariate distribu-
tion functions of the form (2.1), which have fixed continuous marginals
F (x) and G(y) and satisfy (2.2)-(2.4), still satisfies (2.2)-(2.4).

Proof. Let

H1(x, y) = F (x)G(y) + w1(x, y), H2(x, y) = F (x)G(y) + w2(x, y),

where w1(x, y) and w2(x, y) satisfy conditions (2.2)-(2.4).
Let H(x, y) = αH1(x, y) + (1− α)H2(x, y), 0 ≤ α ≤ 1.
Then

H(x, y) = F (x)G(y) + w(x, y)
where w(x, y) = αw1(x, y) + (1− α)w2(x, y).

Clearly, w(x, y) satisfies (2.2)-(2.4). Hence, H(x, y) is a negatively
quadrant dependent bivariate distribution such that w(x, y) satisfies
(2.2)-(2.4).

Example 2.7. Let

(2.9) H0(x, y) = F (x)G(y) for all x and y,

and

(2.10) H∗(x, y) = max(0, F (x) + G(y)− 1) for all x and y.

Then
Hα(x, y) = αH0(x, y) + (1− α)H∗(x, y)

satisfies (2.2)-(2.4) and thus Hα(x, y) is negatively quadrant dependent
bivariate distribution. First note that H∗(x, y) = max(0, F (x) + G(y)−
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1) is negatively quadrant dependent and w(x, y) = (α− 1)[F (x)G(y)−
max(0, F (x) + G(y)− 1)] satisfies conditions (2.2)-(2.4).

Proof. It is clear that for 0 < α < 1,

Hα(x, y) = αF (x)G(y) if F (x) + G(y) ≤ 1
F (x)G(y)− (1− α)(1− F (x))(1−G(y))(2.11)
if F (x) + G(y) ≥ 1

and

w(x, y) = −(1− α)F (x)G(y) if F (x) + G(y) ≤ 1
−(1− α)(1− F (x))(1−G(y)) if F (x) + G(y) ≥ 1.

Hence, w(x, y) satisfies (2.2)-(2.4) and thus Hα(x, y) is negatively quad-
rant dependent.

The F-G-M bivariate distribution has been studied extensively. It has
several applications in various contexts, for example, in competing risk
problems(Tolley and Norman(1979)), in joint occurrence of certain trace
elements in water(Cook and Johnson(1986)) and a robustness(Delahorra
and Fernandez(1985)). For more details on copulas see, for example,
Nelsen(1999). In the next section, we study a generalized F-G-M bivari-
ate distribution having negative quadrant dependence property.

3. A generalized negatively quadrant dependent F-G-M cop-
ula

For simplicity, let F and G be absolutely continuous and let X and
Y be dependent according to a copula C(u, v) for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.
Thus the joint distribution H(x, y) of X and Y is given by

(3.1) H(x, y) = C(F (x), G(y)),

see, e.g. Nelsen(2006, p.15). Let U = F (X) and V = G(Y ), so that
they are two uniform random variables following the joint distribution
C(u, v) = H(F−1(u), G−1(v)), where F−1 = inf{x : F (x) = u}, i.e.,
F−1(u) is either the inverse function of F or the inverse set function.
G−1 is defined similarly.

It is well known that the negatively quadrant dependent F-G-M bi-
variate distribution discussed in Section 2 has copula given by

(3.2) C(u, v) = uv{1 + ρ(1− u)(1− v)}, −1 ≤ ρ ≤ 0,

where w(u, v) = ρuv(1− u)(1− v).
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Let w(u, v) be generalized further to a bivariate beta function, i.e.,

(3.3) w(u, v) = ρubvb(1− u)a(1− v)a, a, b ≥ 1, −1 ≤ ρ ≤ 0.

Theorem 3.1. Let C(u, v) = uv + w(u, v) = uv + ρubvb(1− u)a(1−
v)a. Then, C(u, v) is the distribution function of a bivariate uniform
distribution having the negative quadrant dependence property.

Proof. It is clear that conditions (2.2) and (2.4) are satisfied. The
condition (2.3) is also satisfied (see Appendix).

From Theorem 3.1 we automatically obtain the following result.

Corollary 3.2. Suppose that w(u, v) has a form

w(u, v) = ρuv(1− u)a(1− v)a, a ≥ 1, −1 ≤ ρ ≤ 0.

Then,

(3.4) C(u, v) = uv{1 + ρ(1− u)a(1− v)a}
gives rises to a negative quadrant dependent bivariate distribution.

We establish preservation of negative quadrant dependence under
convex combination.

Theorem 3.3. Let C1(u, v) = uv + ρ1u
b1vb1(1− u)a1(1− v)a1 , a1 ≥

1, b1 ≥ 1, −1 ≤ ρ1 ≤ 0 and C2(u, v) = uv + ρ2u
b2vb2(1 − u)a2(1 −

v)a2 , a2 ≥ 1, b2 ≥ 1, −1 ≤ ρ2 ≤ 0 be the distributions of bivari-
ate uniform distribution, and let the convex combination C(u, v) =
αC1(u, v)+(1−α)C2(u, v), 0 < α < 1. Then, C(u, v) is the distribution
of a bivariate uniform distribution having negative quadrant dependence
property.

Proof. (i) The case a1 = a2 = a, b1 = b2 = b; Let

C(u, v) = αC1(u, v) + (1− α)C2(u, v)

= uv + [αρ1 + (1− α)ρ2]ubvb(1− u)a(1− v)a(3.5)

= uv + ρubvb(1− u)a(1− v)a,

where ρ = αρ1 + (1− α)ρ2.
It is clear that −1 ≤ min(ρ1, ρ2) ≤ ρ ≤ 0. Hence, by Theorem 3.1

(3.5) is negatively quadrant dependent.
(ii) The case a1 6= a2, b1 6= b2; Let

C(u, v) = αC1(u, v) + (1− α)C2(u, v)

= uv + αρ1u
b1vb1(1− u)a1(1− v)a1(3.6)

+(1− α)ρ2u
b2vb2(1− u)a2(1− v)a2

= uv + w(u, v),
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where w(u, v) = αρ1u
b1vb1(1−u)a1(1−v)a1 +(1−α)ρ2u

b2vb2(1−u)a2(1−
v)a2 . It is clear that w(u, v) satisfies (2.2) and (2.4). By Appendix, for
−1 ≤ ρ1 ≤ 0 and −1 ≤ ρ2 ≤ 0,

(3.7)
∂2

∂u∂v
[αρ1u

b1vb1(1− u)a1(1− v)a1 ] ≥ −α,

(3.8)
∂2

∂u∂v
[(1− α)ρ2u

b2vb2(1− u)a2(1− v)a2 ] ≥ −(1− α).

It follows from (3.7) and (3.8) that ∂2w(u,v)
∂u∂v ≥ −1 which satisfies (2.3).

Hence, (3.6) is negatively quadrant dependent.

Remark 3.4. When −1 ≤ ρ1 ≤ 0 and −1 ≤ ρ2 ≤ 0, take a =
min(a1, a2) and b = min(b1, b2) and ρ = max(ρ1, ρ2). Then, we also
have

C(u, v) ≤ uv + (αρ1 + (1− α)ρ2)[ubvb(1− u)a(1− v)a]

≤ uv + ρ[ubvb(1− u)a(1− v)a] ≤ uv.

Hence C(u, v) is negatively quadrant dependent.

4. The ordering of negative quadrant dependence

It would be of some interest to study bivariate negative dependence
orderings of this new parametric family of distributions we obtained
earlier. Fundamentally, we consider the concept of one pair of random
variables being more negatively dependent than another pair.

Let β = β(F, G) denote the class of bivariate joint distribution func-
tions H on R2 having specified marginal distribution functions F and G.
Let β̄ denote the subclass of β where H is negative quadrant dependent.

Definition 4.1 (Ebrahimi(1982)). Let H1 and H2 belong to β̄. The
bivariate distribution H2 is said to be more negatively quadrant depen-
dent than H1 if

(4.1) H2(x, y) ≤ H1(x, y) for all x and y.

Remark 4.2. Note that the requirement of specified marginals is im-
portant because we can alter the degree of negative quadrant dependence
changing the scale.

Remark 4.3. An equivalent form of (4.1) is

(4.2) H̄2(x, y) ≤ H̄1(x, y) for all x and y.

where H̄(x, y) = P (X > x, Y > y).
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Theorem 4.4. Suppose both H1(x, y) and H2(x, y) belong to β̄ and
H1(x, y) and H2(x, y) can be written as (2.1) i.e., let

H1(x, y) = F (x)G(y) + w1(x, y)

and

H2(x, y) = F (x)G(y) + w2(x, y),

where w1(x, y) and w2(x, y) satisfy the conditions (2.2)-(2.4).

Then

w2(x, y) ≤ w1(x, y) ⇔ H2(x, y) ≤ H1(x, y).

Now we define a negative quadrant dependence family of bivariate
distributions H which is increasing in λ(decreasing in λ) and give some
interesting examples of such families.

Definition 4.5 (Ebrahimi(1982)). A family of distributions {H =
Hλ(x, y) : λ ∈ Λ and H ∈ β̄}, Λ ∈ R, is said to be increasing negative
quadrant dependent(decreasing negative quadrant dependent) in λ if
and only if

λ
′
> λ ⇒ Hλ

′ < Hλ(Hλ
′ > Hλ).

Example 4.6. Let H(x, y) = F (x)G(y) + w(x, y), where w(x, y) sat-
isfies (2.2)-(2.4). For λ, λ′ > 0 let

Hλ = F (x)G(y) + λw(x, y),

Hλ′ = F (x)G(y) + λ
′
w(x, y).

Then 0 < λ
′
< λ ⇒ Hλ < Hλ′ .

Example 4.7. Consider the bivariate F-M-G family of distributions
with df

Hα(x, y) = F (x)G(y)[1 + α(1− F (x))(1−G(y))], −1 ≤ α ≤ 0.

= F (x)G(y) + wα(x, y).

Then for −1 < α1 < α2 ≤ 0,

α1(1− F (x))(1−G(y)) < α2(1− F (x))(1−G(y))
⇒ wα1(x, y) < wα2(x, y)
⇒ Hα1(x, y) < Hα2(x, y).

Hence, Hα is decreasing negatively quadrant dependent in α.
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Example 4.8. For −1 ≤ ρ1, ρ2 ≤ 0, λ1 > 0, λ2 > 0, let

H1(x, y) = (1− eλ1x)(1− eλ2y)[1 + ρ1e
−λ1x−λ2y]

and
H2(x, y) = (1− eλ1x)(1− eλ2y)[1 + ρ2e

−λ1x−λ2y].
Then,

ρ1 ≤ ρ2 implies H1 ≤ H2.

Moreover, let

(4.3) Cρ(u, v) = uv + ρubvb(1− u)a(1− v)a, a, b ≥ 1, −1 ≤ ρ ≤ 0.

Then
ρ1 < ρ2 implies Cρ1 ≤ Cρ2 .

Hence, Cρ(u, v) is decreasing negative quadrant dependent in ρ.

Theorem 4.9. Define Cρ(u, v) as above in (4.3). Then, the correla-
tion coefficient is decreasing in ρ.

Proof. The joint product moments are

EU iV i =
1

i + 1
× 1

j + 1

+ρB(i + b, a)B(j + b, a)[b− (a + b)(i + b)
i + a + b

][b− (a + b)(j + b)
i + a + b

].

The covariance is

Cov(U, V ) = ρ[B(b + 1, a + 1)]2

and the correlation coefficient is

Corr(U, V ) = 12ρ[B(b + 1, a + 1)]2.

Hence, the correlation coefficient is decreasing in ρ(−1 ≤ ρ ≤ 0).

Appendix

Lemma A Let w(u, v) = ρubvb(1 − u)a(1 − v)a, a, b ≥ 1 and −1 ≤
ρ ≤ 0. Then

∂2w(u, v)
∂u∂v

≥ −1 for all u ≥ 1 and v ≥ 1.

Proof. The proof is similar to the idea in Appendix in Lai and Xie(2000).
But for the completeness we repeat it here.

From partial differentiation of w(u, v) = ρubvb(1 − u)a(1 − v)a, we
have

∂w(u, v)
∂u

= ρvb(1− v)bg(u),
∂2w(u, v)

∂u∂v
= ρg(u)g(v),
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where

(A.1) g(u) = ub−1(1− u)a−1[b− (a + b)u].

It is enough to show that

∂2w(u, v)
∂u∂v

= ρg(u)g(v) ≥ −1, for − 1 ≤ ρ ≤ 0.

(A.2) g
′
(u) = b(b− 1)− 2u[b(a + b)− 1] + (a + b)(a + b− 1)u2

and g
′
(u∗) = 0 at the point

(A.3) u∗ =
b(a + b− 1) +

√
ab(a + b− 1)

(a + b)(a + b− 1)
.

From (A.3) we have

[b− (a + b)u∗] = −
√

ab

a + b− 1
.

Note that for 0 ≤ u ≤ b/(a + b), g(u) ≥ 0 and for b/(a + b) ≤ u ≤
1, g(u) ≤ 0. It follows from (A.3) that b/(a + b) ≤ u∗ ≤ 1 and thus
g(u∗) ≤ 0.

Rewrite u∗ given in (A.3), i.e.,

u∗ =
b

a + b
+

1
a + b

×
√

ab

a + b− 1
.

For a, b ≥ 1, (b − 1) ≥ (b − 1)/a implies ab > a + b − 1, which yields
u∗ ≥ (b + 1)/(a + b).

Since (1 − u)a−1 ≥ 0 we only consider h1(b) = ub−1[b − (a + b)u],
where g(u) = (1− u)a−1h1(b).

Now ∂h1(b)
∂b = ub−1{log u× [b−(a+b)u]+(1−u)} > 0 for u ≥ b/(a+b)

which shows that g is an increasing function in u for u ≥ b/(a + b).
Similarly, by the fact that ub−1 ≥ 0, we only consider h2(a) =

(1 − a)a−1[b − (a + b)u], where g(u) = ub−1h2(a). Then ∂h2(a)
∂a = (1 −

u)a−1{log(1−u)×[b−(a+b)u]−u} ≥ 0 if {log(1−u)×[b−(a+b)u]−u} ≥ 0.
Since log(1− u) < −u, it follows that log(1− u)[b− (a + b)u]− u >

−u[b−(a+b)u]−u > 0 for u ≥ (b+1)/(a+b). In other words, h
′
2(a) ≥ 0

and thus g is increasing in a for u ≥ (b + 1)/(a + b).
Since (b + 1)/(a + b) ≤ u∗ ≤ 1, g(u∗) is increasing in both a and b.
When a = 1, and b = 1 g(u∗) = −1, which yields g(u) ≥ −1 for all

a ≥ 1 and b ≥ 1. Also g(u) < 1, for all a ≥ 1, b ≥ 1 and 0 ≤ u ≤ 1.
Hence, ∂2w(u,v)

∂u∂v = ρg(u)g(v) ≥ −1 for −1 ≤ ρ ≤ 0, 0 ≤ u ≤ 1. In
other words w(u, v) satisfies condition (2.3).
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