Travel-time is considered the most typical and preferred traffic information for intelligent transportation systems(ITS). This paper proposes a real-time travel-time prediction method for a national highway. In this paper, the K-nearest neighbor(KNN) method is used for travel time prediction. The KNN method (a nonparametric method) is appropriate for a real-time traffic management system because the method needs no additional assumptions or parameter calibration. The performances of various models are compared based on mean absolute percentage error(MAPE) and coefficient of variation(CV). In real application, the analysis of real traffic data collected from Korean national highways indicates that the proposed model outperforms other prediction models such as the historical average model and the Kalman filter model. It is expected to improve travel-time reliability by flexibly using travel-time from the proposed model with travel-time from the interval detectors.
Naive Bayes nearest neighbor (NBNN) is a simple image classifier based on identifying nearest neighbors. NBNN uses original image descriptors (e.g., SIFTs) without vector quantization for preserving the discriminative power of descriptors and has a powerful generalization characteristic. However, it has a distinct disadvantage. Its memory requirement can be prohibitively high while processing a large amount of data. To deal with this problem, we apply a spherical hashing binary code embedding technique, to compactly encode data without significantly losing classification accuracy. We also propose using an inverted index to identify nearest neighbors among binarized image descriptors. To demonstrate the benefits of our method, we apply our method to two existing NBNN techniques with an image dataset. By using 64 bit length, we are able to reduce memory 16 times with higher runtime performance and no significant loss of classification accuracy. This result is achieved by our compact encoding scheme for image descriptors without losing much information from original image descriptors.
Journal of Korean Association for Spatial Structures
/
v.7
no.6
/
pp.75-82
/
2007
In this study, a design-supporting system, which is intended to assist engineers in the schematic phase of the structural design, is developed using a case database that contains design information of tall buildings in Korea. A case-based reasoning method utilizing the case database is proposed. The inductive retrieval module for selecting structural system, in the initial stage, from the design information of case database for 47 tall buildings is presented. Also, the nearest-neighbor retrieval method for selecting similar design cases is introduced.
Place recognition for LBS (Location Based Service) has been one of the important techniques for user-oriented service. FLANN (Fast Library for performing Approximate Nearest Neighbor) of place recognition with image features is fast, but it is affected much by environmental condition such as occlusions. This paper presents a place recognition method using quad vocabulary tree with SURF (Speeded Up Robust Features). In learning stage, an image is represented with spatial pyramid of three levels and vocabulary trees of their sub-regions are constructed. Query image is matched with the learned vocabulary trees in each level. The proposed method measures homography error of the matched features. By considering the number of inliers in sub-region, we can improve place recognition performance.
Transactions of the Korean Society of Machine Tool Engineers
/
v.18
no.2
/
pp.170-177
/
2009
The objective of this study is to evaluate an acoustic emission (AE) source characterization and fracture behavior of the SM45C steel by using back-propagation neural network (BPN). In previous research Ref. [8] about k-nearest neighbor classifier (k-NNC) continuity, we used K-means clustering method as an unsupervised learning method for obtaining multi-variate AE main data sets, such as AE counts, energy, amplitude, risetime, duration and counts to peak. Similarly, we applied k-NNC and BPN as a supervised learning method for obtaining multi-variate AE working data sets. According to the error of convergence for determinant criterion Wilk's ${\lambda}$, heuristic criteria D&B(Rij) and Tou values are discussed. As a result, in k-NNC before fracture signal is detected or when fracture signal is detected, showed that produce some empty classes in BPN. And we confirmed that could save trouble in AE signal processing if suitable error of convergence or acceptable encoding error give to BPN.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2007.10a
/
pp.418-421
/
2007
In this paper, we proposed a hierarchical nearest-neighbor searching method for deciding fitness of a clustered segment. It is difficult to distinguish the difference between correct spots and atypical noisy spots in footprint patterns. Therefore we could not completely remove unsuitable noisy spots from binarized image in image preprocessing stage or clustering stage. As a preprocessing stage for recognition of insect footprints, this method decides whether a segment is suitable or not, using degree of clustered segment fitness, and then unsuitable segments are eliminated from patterns. Removing unsuitable segments can improve performance of feature extraction for recognition of inset footprints.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2002.11a
/
pp.912-915
/
2002
This paper presents off-line handwritten numeral recognition method by using Eigen-Vectors. In this method, numeral features are extracted statistically by using Eigen-Vectors through KL transform and input numeral is recognized in the feature space by the nearest-neighbor classifier. In our feature extraction method, basis vectors which express best the property of each numeral type within the extensive database of sample numeral images are calculated, and the numeral features are obtained by using this basis vectors. Through the experiments with the unconstrained handwritten numeral database of Concordia University, we have achieved a recognition rate of 96.2%.
The Transactions of the Korean Institute of Electrical Engineers C
/
v.51
no.6
/
pp.265-270
/
2002
The determination of DNA hybridization reaction can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and application area. So, the improvement of DNA hybridization detection method is very important for the determination of this hybridization reaction. Several molecular biological techniques require accurate predictions of matched versus mismatched hybridization thermodynamics, such as PCR, sequencing by hybridization, gene diagnostics and antisense oligonucleotide probes. In addition, recent developments of oligonucleotide chip arrays as means for biochemical assays and DNA sequencing requires accurate knowledge of hybridization thermodynamics and population ratios at matched and mismatched target sites. In this study, we report the characteristics of the probe and matched, mismatched target oligonucleotide hybridization reaction using thermodynamic method. Thermodynamic of 5 oligonucleotides with central and terminal mismatch sequences were obtained by measured UV-absorbance as a function of temperature. The data show that the nearest-neighbor base-pair model is adequate for predicting thermodynamics of oligonucleotides with average deviations for $\Delta$H$^{0}$ , $\Delta$S$^{0}$ , $\Delta$G$_{37}$$^{0}$ and T$_{m}$, respectively.>$^{0}$ and T$_{m}$, respectively.
For single image super resolution (SR), interpolation based and example based algorithms are extensively used. The interpolation algorithms have the strength of theoretical simplicity. However, those algorithms are tending to produce high resolution images with jagged edges, because they are not able to use more priori information. Example based algorithms have been studied in the past few years. For example based SR, the nearest neighbor based algorithms are extensively considered. Among them, neighbor embedding (NE) has been inspired by manifold learning method, particularly locally linear embedding. However, the sizes of local training sets are always too small. So, NE algorithm is weak in the performance of the visuality and quantitative measure by the poor generalization of nearest neighbor estimation. An improved NE algorithm with Support Vector Regression (SVR) was proposed to solve this problem. Given a low resolution image, the pixel values in its high resolution version are estimated by the improved NE. Comparing with bicubic and NE, the improvements of 1.25 dB and 2.33 dB are achieved in PSNR. Experimental results show that proposed method is quantitatively and visually more effective than prior works using bicubic interpolation and NE.
As rapid improvement in electronic technologies makes sensor hardware more powerful and capable, the application range of sensor networks Is getting to be broader. The main purpose of sensor networks is to monitor the phenomena in interesting regions (e.g., factory warehouses, disaster areas, wild fields, etc) and return required data. The k Nearest Neighbor (KNN) query that finds k objects which are geographically close to the given point is an Important application in sensor networks. However, most previous approaches are either seem to be impractical or are not energy-efficient in resource-limited sensor networks. In this paper. we propose an efficient KNN query processing method in sensor networks. In the proposed method, we dynamically increase searching boundary, if necessary, and traverse nodes inside the boundary until finding k nearest neighbors. Since only the representative sensor nodes are visited, our algorithm reduces a number of messages. We show thorough experiments that the proposed method performs better than the existing method in various network environments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.