• Title/Summary/Keyword: Nb addition

Search Result 491, Processing Time 0.03 seconds

Dielectric and Piezoelectric Properties of (K,Na)NbO3 Ceramics with the amount of K4CuNb8O23 Addition (K4CuNb8O23 첨가에 따른 (K,Na)NbO3 세라믹스의 유전 및 압전특성)

  • Seo, Byeong-Ho;Yoo, Ju-Hyun;Mah, Suk-Burm;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.930-934
    • /
    • 2009
  • In this study, in order to develop excellent lead-free composition ceramics for piezoelectric transformer, ($K_4CuNb_8O_{23}$) added $(K_{0.5}Na_{0.5})(Nb_{0.96}Sb_{0.04})O_3$ ceramics were fabricated using conventional mixed oxide method and their piezoelectric and dielectric properties were investigated as a fu+EY50nction of the amount of KCN addition. With increasing the amount of KCN addition, density and mechanical quality factor(Qm), electromechanical coupling factor (Kp) were increased up to 1.2 mol% and then decreased. At the 1.2 mol% KCN added specimen, mechanical quality factor (Qm), electromechanical coupling factor (Kp), density and dielectric constant (${\varepsilon}r$) showed the optimal values of 781, 0.445, $4.42\;g/cm^3$ and 443, respectively, for piezoelectric transformer application.

The Microwave Dielectric Properties Of $ZnNb_2O_6$ Ceramics With Addition (첨가물에 따른 $ZnNb_2O_6$ 세라믹스의 마이크로파 유전특성)

  • Kim, Jung-Hun;Kim, Ji-Heon;Lee, Sung-Gap;Bae, Sun-Ki;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.101-103
    • /
    • 2003
  • The $ZnNb_2O_6$ ceramics with 5wt% CuO and $B_2O_3$(1,3,5wt%) were prepared by the conventional mixed oxide method. The ceramics were sintered at the temperature of $950^{\circ}C{\sim}1025^{\circ}C$ for 3hr. in air. The structural properties were investigated with sintering temperature and $B_2O_3$ addition by XRD and SEM. Also, the microwave dielectric properties were investigated with sintering temperature and $B_2O_3$ addition. Increasing the sintering temperature, the peak of second phase ($Cu_3Nb_2O_6$) was increased. But no significant difference was observed as the $B_2O_3$ addition, In the $ZnNb_2O_6$ ceramics with 5wt% CuO and 5wt% $B_2O_3$ sintered at $975^{\circ}C$ for 3hr, the dielectric constant, quality factor, temperature coefficient of the resonant frequency were 19.30, 14,662GHz, $+4.18ppm/^{\circ}C$, respectively.

  • PDF

Effects of Nb5+ Addition on Microstructure and Dielectric Properties of BaTiO3

  • Kim, Yeon Jung;Hyun, June Won
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.143-147
    • /
    • 2017
  • Structural studies on the addition characteristics of Nb ions to $BaTiO_3$ solid solutions were performed by XRD and SEM/EDS technique. The X-ray diffraction peaks of the (111), (200) and (002) planes of Nb-doped $BaTiO_3$ solid solutions with different mole% of Nb were analyzed. We also investigated the relationship between the dielectric and structural properties of Nb-doped $BaTiO_3$. The transition temperatures of $BaTiO_3$ solid solution doped with 0.5mole%Nb and 1.0 mole%Nb were ${\sim}116^{\circ}C$ and ${\sim}87^{\circ}C$, respectively, which were found to be shifted to very low temperature from the transition temperature of pure $BaTiO_3$ (about $125^{\circ}C$). As a result of analysis of 1/K versus T and ln[$(1/K)-(1/K_m)$ versus ($T-T_m$)] of the two compositions used in this experiment, the diffusivity slightly differs from that of pure $BaTiO_3$ at temperatures above Curie temperature. And this characteristic was analyzed by applying the modified Curie-Weiss law.

Dielectric and Piezoelectric Characteristics of $0.95(K_{0.5}Na_{0.5})NbO_3$-0.05Li$(Sb_{0.8}Nb_{0.2})O_3$ Ceramics with the amount of $MnO_2$ addition ($MnO_2$ 첨가에 따른 $0.95(K_{0.5}Na_{0.5})NbO_3$-0.05Li$(Sb_{0.8}Nb_{0.2})O_3$ 세라믹스의 유전 및 압전특성)

  • Kim, Do-Hyung;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.172-173
    • /
    • 2008
  • In this study, $0.95(K_{0.5}Na_{0.5})NbO_3$-0.05Li$(Sb_{0.8}Nb_{0.2})O_3$ + $Ag_2O$ + x wt% $MnO_2$ were investigated as a function of the amount of $MnO_2$ addition in order to improve dielectric and piezoelectric properties of Lead-free piezoelectric ceramics. With increasing the amount of $MnO_2$ addition, density and electromechanical coupling factor $(k_p)$ increased up to 0.3wt.% $MnO_2$ and decreased above 0.3wt.% $MnO_2$. At the sintering temperature of 1020 $^{\circ}C$, Electromechanical coupling factor $(k_p)$, density, dielectric constant $({\varepsilon}r)$ and mechanical quality factor $(Q_m)$ of composition ceramics with 0.4wt% $Ag_2O$ addition showed the optimal value of 0.431, 4.33 g/$cm^3$, 820 and 119, respectively.

  • PDF

Influence of $TiO_2$ on the dielectric properties of $Bi(Nb_{0.7}Ta_{0.3})O_4$ ceramics for low-firing (저온소결용 $Bi(Nb_{0.7}Ta_{0.3})O_4$ 세라믹스의 유전특성에 미치는 $TiO_2$ 영향)

  • Kim, Dae-Min;Yoon, Sang-Ok;Kim, Kwan-Soo;Kim, Shin;Kim, Jae-Chan;Kim, Kyung-Joo;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.298-298
    • /
    • 2007
  • Influence of $TiO_2$ on the dielectric properties of the $Bi(Nb_{0.7}Ta_{0.3})O_4$ ceramic with 7 wt% zinc borosilicate(ZBS) glass was investigated as a function of the $TiO_2$ contents with a view to applying this system to LTCC technology. The $Bi(Nb_{0.7}Ta_{0.3})O_4$ ceramic addition of 7 wt% ZBS glass ensured successful sintering below $900^{\circ}C$. But, TCF of $Bi(Nb_{0.7}Ta_{0.3})O_4$ ceramic is large negative values, respectively, it is necessary to adjust to zero TCF for practical applications Therefore, the addition of materials having positive TCF, such as $TiO_2$, might be an effective method for the improvement. In general, increasing addition of $TiO_2$ increased dielectric constant and TCF but it decreased the sinterability and $Q{\tiems}f$ value significantly due to the dielectric property and high sintering temperature of $TiO_2$. $Bi(Nb_{0.7}Ta_{0.3})O_4$ ceramic with 7 wt% ZBS glass and then addition 0.5 wt% $TiO_2$ sintered at $900^{\circ}C$ demonstrated 42 in the dielectric constant(${\varepsilon}_r$), 1,000 GHz in the $Q{\times}f$ value, and $10{\pm}5\;ppm/^{\circ}C$ in the temperature coefficient of resonant frequency(${\tau}_f$).

  • PDF

The Effect of $V_2O_5$ Addition on the Microwave Dielectric Properties of $Zn_3Nb_2O_8$ Ceramics ($V_2O_5$ 첨가가 $Zn_3Nb_2O_8$ 마이크로파 유전체 특성에 미치는 영향)

  • Yun, Ho-Byung;Lee, Tae-Kun;Hwang, Yeon
    • Korean Journal of Crystallography
    • /
    • v.17 no.1
    • /
    • pp.24-32
    • /
    • 2006
  • The microwave dielectric properties of $Zn_3Nb_2O_8\;with\;V_2O_5$ addition were investigated. The addition of $V_2O_5$ enhanced the sinterability of $Zn_3Nb_2O_8$, which resulted in high density of $Zn_3Nb_2O_8$ ceramic greater than 95% of the theoretical value when sintered at $900^{\circ}C$ for 4 hours. X-ray diffraction analysis of sintered $Zn_3Nb_2O_8$ ceramic showed no second phase with $V_2O_5$ addition. Dielectric permittivity(${\varepsilon}_r$) and quality factor($Q{\times}f$) varied with both density at different sintering temperature and $V_2O_5$ addition. Dielectric permittivity, quality factor and temperature coefficient($T_{cf}$) of the two mole of $V_2O_5\;added\;Zn_3Nb_2O_8$ that was sintered at $900^{\circ}C$ were 21.4, 40,000, $-54ppm/^{\circ}C$, respectively.

Effect of Secondary Carbide Addition on Properties of $Ti(C_{0.7}N_{0.3})-Ni$ Cermets

  • Ahn, S.;Kim, H.;Kang, S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.107-108
    • /
    • 2006
  • The effect of WC or NbC addition on various properties of Ti(C0.7N0.3)-Ni cermets was investigated. The microstructure oj Ti(C0.7N0.3)-xWC-20Ni showed a typical core/rim structure, irrespective of the WC content, whereas the structure oj Ti(C0.7N0.3)-xNbC-20Ni was different and was dependent on the NbC content. The hardness (HV) and the fracture toughness (KIC) had a tendency to increase marginally, while the coercive force (HC) and the magnetic saturation $(4{\pi}{\sigma})$ decreased gradually with an increase in WC or NbC content in the systems studied. In addition, increasing WC content in Ti(C0.7N0.3)-xWC-20Ni system, decarburization was retarded, while denitrification was accelerated

  • PDF

Dielectric and Piezoelectric Properties of 0.57Pb(Sc1/2Nb1/2)O3-0.43PbTiO3 Ceramics with Dopant Additions (도펀트 첨가에 따른 0.57Pb(Sc1/2Nb1/2)O3-0.43PbTiO3 세라믹스의 유전 및 압전특성)

  • Ji, Seung-Han;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • Dielectric and piezoelectric properties of $0.57Pb(Sc_{1/2}Nb_{1/2})O_{3}-0.43PbTiO_{3}$, which is the morphotropic phase boundary composition for the PSN-PT system, were investigated as a function of $Fe_{2}O_{3},\;Nb_{2}O_{5}\;and\;MnO_{2}$ addition 0 wt% to 0.9 wt%. The maximum dielectric constant of ${\varepsilon}_{33}/{\varepsilon}_{o}=2054$ and the minimum dielectric loss of $tan{\delta}=0.37\;%$ at room temperature were obtained at 0.1 wt% of $Fe_{2}O_{3}$ and 0.5 wt% of $MnO_{2}$ addition, respectively. With addition of 0.5 wt% $Nb_{2}O_{5}$ and $0.5\;wt%\;MnO_{2}$, the electromechanical coupling factor $k_{p}$ and mecanical quality factor $Q_{m}$ were significantly increased, respectively. The maximum electromechanical coupling factor $k_{p}=61.5\;%$ was obtained by addition of $Nb_{2}O_{5}$ and high mechanical quality factor $Q_{m}=919$ was obtained by addition of $MnO_{2}$. The $Q_{m}(=919)$ value is 3.3 times larger than that of non-doped 0.57PSN-0.43PT ceramics.

Doping Effects of Mg and/or Fe ions on Congruent $LiNbO_3$ Single Crystal Growth

  • Bae, So-Ik;J. Ichikawa;K. Shimamura;H. Onodera;T. Fukuda
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.139-143
    • /
    • 1997
  • The doping effects of Mg and/or Fe ions on congruent LiNbO$_3$ single crystal growth were studied in order to clarify the roles of MgO in Fe doped LiNbO$_3$ single crystals. The effective distribution coefficienct of Fe was found decreased drastically from 0.85 to 0.5 by the addition of MgO into the LiNbO$_3$ melt. M ssbauer spectra revealed that the addition of MgO reduces the occurrence of Fe2+ ions during growth in air. Therefore, it is likely that there would be two important roles of MgO in Fe doped LiNbO$_3$. One is to suppress the incorporation of all Fe ions, and the other is to reduce the concentration of Fe2+ ions among the total Fe ions.

  • PDF

Microstructure Development during Sintering of $Nb_2O_5$-doped $UO_2$ pellets under $H_2$ and $CO_2$ atmospheres ($Nb_2O_5$ 첨가 $UO_2$ pellet의 수소 분위기와 이산화탄소 분위기 소결 중 미세조직의 형성에 대한 연구)

  • Song, K.W.;Kim, S.H.;Kim, B.G.;Lee, Y.W.;Yang, M.S.;Park, H.S.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.484-492
    • /
    • 1994
  • Microstructures of Nb$_2$O$_{5}$-doped UO$_2$ pellets have been investigated during sintering under H$_2$ and $CO_2$ atmospheres. Pellets are sintered at 1$700^{\circ}C$ in H$_2$ atmosphere and at 130$0^{\circ}C$ in $CO_2$ atmosphere for 1 to 41 hr. The addison of Nb$_2$O$_{5}$ causes the formation of large pores, which shrink to some extent in H$_2$ atmosphere but very little in $CO_2$. Fine pores in the Nb$_2$O$_{5}$-doped UO$_2$ pellet are almost annihilated when sintered under H$_2$ atmosphere but little changed under $CO_2$ atmosphere. The increase in grain size due to Nb$_2$O$_{5}$ addition is much larger in H$_2$ atmosphere than in $CO_2$. Thus the enhancement of uranium diffusion in UO$_2$ due to the Nb$_2$O$_{5}$ addition is thought to be more significant in H$_2$ atmosphere. Microstructures of Nb$_2$O$_{5}$-doped UO$_2$ pellets sintered in H$_2$ atmosphere are discussed from the viewpoint of in-reactor performance. Possible defects formation due to Nb$_2$O$_{5}$ addition is discussed to explain the enhancement of uranium diffusion in H$_2$ and $CO_2$ atmospheres.> atmospheres.

  • PDF