• Title/Summary/Keyword: Navigation frame

Search Result 198, Processing Time 0.026 seconds

A Theoretical Study on Free Gyroscopic Compass

  • Jeong, Tae-Gweon;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.30 no.9
    • /
    • pp.729-734
    • /
    • 2006
  • The authors aim to establish the theory necessary for developing the free gyroscopic compass and focus on mainly two points. One is to suggest north-finding principle by the angular velocity of the earth's rotation, and the other is to suggest orthogonal coordinate transformations of the motion rate of the spin axis, which transforms the components of motion rate in the free gyro frame into those in the platform frame and that this transformed rate is, in turn, transformed into the NED(north-east-down) navigation frame. Subsequently, ship's heading is obtained by using the fore-aft and athwartship components of the motion rate of the spin axis in the NED frame. In addition it was found how to solve the transformation matrix necessary for transforming each frame.

An Algorithmic Study on Free-gyro Positioning System( I ) - Measuring Nadir Angle by using the Motion Rate of a Spin Axis -

  • Jeong, Tae-Gweon;Park, Sok-Chu
    • Journal of Navigation and Port Research
    • /
    • v.31 no.9
    • /
    • pp.751-757
    • /
    • 2007
  • The authors aim to establish the theory necessary for developing free gyro positioning system and focus on measuring the nadir angle by using the motion rate of a free gyro. The azimuth of a gyro vector from the North can be given by using the property of the free gyro. The motion rate of the spin axis in the gyro frame is transformed into the platform frame and again into the NED (north-east-down) navigation frame. The nadir angle of a gyro vector is obtained by using the North components of the motion rate of the spin axis in the NED frame. The component has to be transformed into the horizontal component of the gyro by using the azimuth of the gyro vector and then has to be integrated over the sampling interval.

A Theoretical Study on Free Gyrocompass

  • Park, Sok-Chu;Jeong, Tae-Gweon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.9-14
    • /
    • 2006
  • The authors aim to establish the theory necessary for developing the free gyrocompass. The following considerations are taken. One is to suggest north-finding principle by the angular velocity of the earth's rotation, and the other is to suggest that the motion rate of the spin axis in the free gyro frame is transformed into the platform fame and this transformed rate is again transformed into the NED navigation frame. After transformation ship's heading is obtained using the fore-aft and athwartship components of the motion rate of the spin axis in the NED frame In addition it was suggested how to solve the transformation matrix necessary for transforming each frame.

  • PDF

Analysis of Frame Boundary Detection Performance for A Satellite Navigation Augmentation Signal Orthogonally Modulated Using Hadamard Code (하다마드 코드로 직교 변조된 위성항법 보강 신호의 프레임 경계 획득 성능 분석)

  • Janghwan Shin;Jae Hee Noh;Jae Min Ahn
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.207-213
    • /
    • 2024
  • This paper examines the frame boundary detection performance for a satellite navigation augmentation signal orthogonally modulated with Hadamard code to determine the number of message preamble bits. Simulation results show that, even in weak signal environments, designing the message preamble with 32 bits is recommended for achieving stable frame boundary detection.

Design and performance analysis of a zero-velocity update Kalman filter for SDINS (SDINS의 영속도 보정 칼만필터 설계)

  • 박흥원;정태호;박찬빈;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.633-638
    • /
    • 1988
  • In this paper, a zero-velocity update technique to improve navigation accuracy of a SDINS(Strapdown Inertial Navigation System) has been studied. An indirect feedback Kalman filter which includes SDINS error equations based on a quaternion between body-fixed frame and local level navigation frame is employed for processing zero-velocity updates in an on-board navigation filter. Simulation results for land-mobile vehicle show that the zerovelocity update technique make a significant contribution to improving SDINS performance without any external aids.

  • PDF

A Gyro-Free INS Algorithm in the Navigation Frame and Its Application to the Spinning Vehicle with High Rotation Rate

  • Lee, Junhak;Kim, Heyone;Oh, Sang Heon;Do, Jae Chul;Nam, Chang Woo;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.91-103
    • /
    • 2018
  • Conventional inertial measurement units cannot be used in the spinning vehicle with high rotation rate due to gyro's narrow operation range. By the way, angular acceleration can be measured using the accelerometer array distributed in the vehicle. This paper derives a mechanization for the gyro-free INS in the navigation frame, and proposes a gyro-free INS algorithm based on the derived mechanization. In addition, the proposed algorithm is used to estimate angular velocity, attitude, velocity, and position of a spinning vehicle with high rotation rate. A MATLAB-based software platform is configured in order to show validation of the proposed algorithm. The reference trajectory of a spinning vehicle at 3 round per second, 30 round per second are set up, and the outputs of accelerometer are generated when triads of accelerometer are located at the origin and all the axes. Navigation results of the proposed algorithm for the generated output are presented. The results show that the proposed navigation algorithm can be applied to the spinning vehicle with high rotation rate.

Development of the Real-time Initial Alignment Algorithm using the Kalman Filter

  • Oh, Sang-Heon;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.61.2-61
    • /
    • 2001
  • The purpose of the initial alignment of a SDINS is to get a coordinate transformation matrix from the body frame to the navigation frame. The initial alignment is one of the most important processes in the navigation system since its error has a large influence on the navigation solution. In this paper, a real-time initial alignment algorithm for the SDINS is developed using the Kalman filter. The steady state error analysis is performed for the developed Kalman filter technique and the gyrocompass loop method. The performance of the developed alignment method is compared with the gyrocompass loop method through the real-time alignment experiments.

  • PDF

Development of the Algorithm for Strapdown Inertial Navigation System for Short Range Navigation

  • Lee, Sang-Jong;Naumenko, C.;Bograd, V.;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.81-91
    • /
    • 2000
  • The mechanization of navigation equation is depending on the designer according to the orientation vector relating the body frame to a chosen to inertial and navigation frames for its purposes. This paper considers the appropriate Earth Fixed frame for short range vehicle and develops a mechanization and algorithm for Strapdown Inertial Navigation System(SDINS). This mechanization consists of two parts : translational mechanization and rotational mechanization{attitude determination). The accuracy, availability and performance of this SDINS mechanization are verified on the simulation and the numerical method for integration attitude propagation is compared with a well-known method in a precession motion.

  • PDF

A Method for Virtual Lane Estimation based on an Occupancy Grid Map (장애물 격자지도 기반 가상차선 추정 기법)

  • Ahn, Seongyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.773-780
    • /
    • 2015
  • Navigation in outdoor environments is a fundamental and challenging problem for unmanned ground vehicles. Detecting lane markings or boundaries on the road may be one of the solutions to make navigation easy. However, because of various environments and road conditions, a robust lane detection is difficult. In this paper, we propose a new approach for estimating virtual lanes on a traversable region. Estimating the virtual lanes consist of two steps: (i) we detect virtual road region through road model selection based on traversability at current frame and similarity between the interframe and (ii) we estimate virtual lane using the number of lane on the road and results of previous frame. To improve the detection performance and reduce the searching region of interests, we use a probability map representing the traversability of the outdoor terrain. In addition, by considering both current and previous frame simultaneously, the proposed method estimate more stable virtual lanes. We evaluate the performance of the proposed approach using real data in outdoor environments.