• Title/Summary/Keyword: Navigation Map

Search Result 612, Processing Time 0.03 seconds

Design and Implementation of Driving Pattern based Map Matching on Smart Phone (스마트폰에서 운전자 이동패턴을 이용한 맵매칭 설계 및 구현)

  • Hwang, Jae-Yun;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.23 no.4
    • /
    • pp.47-56
    • /
    • 2015
  • Recently, there has been an increase in the number of people who use the smart-phone navigation for using various latest functions such as group driving and location sharing. But smart-phone has a limited storage space for one application, since a lot of applications with different purposes are installed in the smart-phone. For this reason, road network data with a large space of memory used for map matching in the device for navigation cannot be stored in the smart-phone for this reason map matching is impossible. Besides, smart-phone which doesn't use the external GPS device, provides inaccurate GPS information, compared to the device for navigation. This is why the smart-phone navigation is hard to provide accurate location determination. Therefore, this study aims to help map matching that is more accurate than the existing device for navigation, by reducing the capacity of road network data used in the device for navigation through format design of a new road network and conversion and using a database of driver's driving patterns. In conclusion, more accurate map matching was possible in the smart-phone by using a storage space more than 80% less than existing device at the intersection where many roads cross, the building forest that a lot of GPS errors occur, the narrow roads close to the highway. It is considered that more accurate location-based service would be available not only in the navigation but also in various applications using GPS information and map in the future Navigation.

Implementing Autonomous Navigation of a Mobile Robot Integrating Localization, Obstacle Avoidance and Path Planning (위치 추정, 충돌 회피, 동작 계획이 융합된 이동 로봇의 자율주행 기술 구현)

  • Noh, Sung-Woo;Ko, Nak-Yong;Kim, Tae-Gyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.148-156
    • /
    • 2011
  • This paper presents an implementation of autonomous navigation of a mobile robot indoors. It explains methods for map building, localization, obstacle avoidance and path planning. Geometric map is used for localization and path planning. The localization method calculates sensor data based on the map for comparison with the real sensor data. Monte Carlo Localization(MCL) method is adopted for estimation of the robot position. For obstacle avoidance, an artificial potential field generates repulsive and attractive force to the robot. Dijkstra algorithm plans the shortest distance path from a start position to a goal point. The methods integrate into autonomous navigation method and implemented for indoor navigation. The experiments show that the proposed method works well for safe autonomous navigation.

Precise Vehicle Localization Using Gaussian Mixture Map Based on Road Marking

  • Kim, Kyu-Won;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 2020
  • It is essential to estimate the vehicle localization for an autonomous safety driving. In particular, since LIDAR provides precise scan data, many studies carried out to estimate the vehicle localization using LIDAR and pre-generated map. The road marking always exists on the road because of provides driving information. Therefore, it is often used for map information. In this paper, we propose to generate the Gaussian mixture map based on road-marking information and localization method using this map. Generally, the probability distributions map stores the single Gaussian distribution for each grid. However, single resolution probability distributions map cannot express complex shapes when grid resolution is large. In addition, when grid resolution is small, map size is bigger and process time is longer. Therefore, it is difficult to apply the road marking. On the other hand, Gaussian mixture distribution can effectively express the road marking by several probability distributions. In this paper, we generate Gaussian mixture map and perform vehicle localization using Gaussian mixture map. Localization performance is analyzed through the experimental result.

Development of an IGVM Integrated Navigation System for Vehicular Lane-Level Guidance Services

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.119-129
    • /
    • 2016
  • This paper presents an integrated navigation system for accurate navigation solution-based safety and convenience services in the vehicular augmented reality (AR)-head up display (HUD) system. For lane-level guidance service, especially, an accurate navigation system is essential. To achieve this, an inertial navigation system (INS)/global positioning system (GPS)/vision/digital map (IGVM) integrated navigation system has been developing. In this paper, the concept of the integrated navigation system is introduced and is implemented based on a multi-model switching filter and vehicle status decided by using the GPS data and inertial measurement unit (IMU) measurements. The performance of the implemented navigation system is verified experimentally.

Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation (재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구)

  • Kim, Su Ho;Shim, Jae Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.

Ontology-Based Process-Oriented Knowledge Map Enabling Referential Navigation between Knowledge (지식 간 상호참조적 네비게이션이 가능한 온톨로지 기반 프로세스 중심 지식지도)

  • Yoo, Kee-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.61-83
    • /
    • 2012
  • A knowledge map describes the network of related knowledge into the form of a diagram, and therefore underpins the structure of knowledge categorizing and archiving by defining the relationship of the referential navigation between knowledge. The referential navigation between knowledge means the relationship of cross-referencing exhibited when a piece of knowledge is utilized by a user. To understand the contents of the knowledge, a user usually requires additionally information or knowledge related with each other in the relation of cause and effect. This relation can be expanded as the effective connection between knowledge increases, and finally forms the network of knowledge. A network display of knowledge using nodes and links to arrange and to represent the relationship between concepts can provide a more complex knowledge structure than a hierarchical display. Moreover, it can facilitate a user to infer through the links shown on the network. For this reason, building a knowledge map based on the ontology technology has been emphasized to formally as well as objectively describe the knowledge and its relationships. As the necessity to build a knowledge map based on the structure of the ontology has been emphasized, not a few researches have been proposed to fulfill the needs. However, most of those researches to apply the ontology to build the knowledge map just focused on formally expressing knowledge and its relationships with other knowledge to promote the possibility of knowledge reuse. Although many types of knowledge maps based on the structure of the ontology were proposed, no researches have tried to design and implement the referential navigation-enabled knowledge map. This paper addresses a methodology to build the ontology-based knowledge map enabling the referential navigation between knowledge. The ontology-based knowledge map resulted from the proposed methodology can not only express the referential navigation between knowledge but also infer additional relationships among knowledge based on the referential relationships. The most highlighted benefits that can be delivered by applying the ontology technology to the knowledge map include; formal expression about knowledge and its relationships with others, automatic identification of the knowledge network based on the function of self-inference on the referential relationships, and automatic expansion of the knowledge-base designed to categorize and store knowledge according to the network between knowledge. To enable the referential navigation between knowledge included in the knowledge map, and therefore to form the knowledge map in the format of a network, the ontology must describe knowledge according to the relation with the process and task. A process is composed of component tasks, while a task is activated after any required knowledge is inputted. Since the relation of cause and effect between knowledge can be inherently determined by the sequence of tasks, the referential relationship between knowledge can be circuitously implemented if the knowledge is modeled to be one of input or output of each task. To describe the knowledge with respect to related process and task, the Protege-OWL, an editor that enables users to build ontologies for the Semantic Web, is used. An OWL ontology-based knowledge map includes descriptions of classes (process, task, and knowledge), properties (relationships between process and task, task and knowledge), and their instances. Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. Therefore a knowledge network can be automatically formulated based on the defined relationships, and the referential navigation between knowledge is enabled. To verify the validity of the proposed concepts, two real business process-oriented knowledge maps are exemplified: the knowledge map of the process of 'Business Trip Application' and 'Purchase Management'. By applying the 'DL-Query' provided by the Protege-OWL as a plug-in module, the performance of the implemented ontology-based knowledge map has been examined. Two kinds of queries to check whether the knowledge is networked with respect to the referential relations as well as the ontology-based knowledge network can infer further facts that are not literally described were tested. The test results show that not only the referential navigation between knowledge has been correctly realized, but also the additional inference has been accurately performed.

A Study on Data Model Migration for Transportation Digital Map to be available as a Raw Database of Car Navigation System (차량 항법용 원도로 활용하기위한 교통 주제도 데이터 모델 전환에 관한 연구)

  • Hahm, Chang-Hahk;Joo, Yong-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2010
  • The aim of this paper is to come up with a methodology of migration for current transportation digital map in order to construct NDRM, which is the most essential map data for car navigation system. The model suggested through our study is able to efficiently produce navigable service map for route finding and guidance as well as to make the best of general road network developed by KOTI.

Topological Map Building for Mobile Robot Navigation (이동로봇의 주행을 위한 토폴로지컬 지도의 작성)

  • 최창혁;이진선;송재복;정우진;김문상;박성기;최종석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.492-497
    • /
    • 2002
  • Map building is the process of modeling the robot's environment. The map is usually built based on a grid-based or topological approach, which has its own merits and demerits. These two methods, therefore, can be integrated to provide a better way of map building, which compensates for each other's drawbacks. In this paper, a method of building the topological map based on the occupancy grid map through a Voronoi diagram is presented and verified by various simulations. This Voronoi diagram is made by using a labeled Voronoi diagram scheme which is suitable for the occupancy grid maps. It is shown that the Proposed method is efficient and simple fur building a topological map. The simple path-planning problem is simulated and experimented verify validity of the proposed approach.

Mobile Art Park Guidance Application using Mobile MAP Open API

  • Jwa, Jeong-Woo;Ko, Sang-Bo;Lee, Deuk-Woo
    • International Journal of Contents
    • /
    • v.7 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • In this paper, we develop a mobile MAP open API using HTML5 local storage and the W3C geolocation API. The mobile MAP open API consists of the basic JavaScript MAP API, offline navigation API, and multimedia POI (mPOI) API. The basic JavaScript MAP API creates a map and controls, rotates, and overlays data on the map. The offline navigation API is developed using HTML5 local storage and web storage. The mobile web application downloads and stores mPOIs of works of art to local storage or web storage from a web server. The mPOI API is developed using HTML5 video and audio APIs. We develop a mobile art park guidance application using the developed mobile MAP open API.

Reduction of GPS Latency Using RTK GPS/GNSS Correction and Map Matching in a Car NavigationSystem

  • Kim, Hyo Joong;Lee, Won Hee;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.37-46
    • /
    • 2016
  • The difference between definition time of GPS (Global Positioning System) position data and actual display time of car positions on a map could reduce the accuracy of car positions displayed in PND (Portable Navigation Device)-type CNS (Car Navigation System). Due to the time difference, the position of the car displayed on the map is not its current position, so an improved method to fix these problems is required. It is expected that a method that uses predicted future positionsto compensate for the delay caused by processing and display of the received GPS signals could mitigate these problems. Therefore, in this study an analysis was conducted to correct late processing problems of map positions by mapmatching using a Kalman filter with only GPS position data and a RRF (Road Reduction Filter) technique in a light-weight CNS. The effects on routing services are examined by analyzing differences that are decomposed into along and across the road elements relative to the direction of advancing car. The results indicate that it is possible to improve the positional accuracy in the along-the-road direction of a light-weight CNS device that uses only GPS position data, by applying a Kalman filter and RRF.