• Title/Summary/Keyword: Navigation Control Architecture

Search Result 124, Processing Time 0.025 seconds

Development of Real-Time Control Architecture for Autonomous Navigation of Powered Wheelchair (전동휠체어의 자유주행을 위한 실시간 제어 구조의 개발)

  • 김병국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.940-946
    • /
    • 2004
  • In this paper, an efficient real-time control architecture for autonomous navigation of powered wheelchair is developed. Since an advanced intelligent wheelchair requires real-time performance, the control software architecture of powered wheelchair is developed under Linux real-time extension Real-time Application Interface (RTAI). A hierarchical control structure for autonomous navigation is designed and implemented using real-time processe and interrupts handling of sensory perception based on slanted surface LRF, emergency handling capability, and motor control with 0.1 msec sampling time. The performance of our powered wheelchair system with the implemented control architecture for autonomous navigation is verified via experiments in a corridor.

Navigation Control Architecture of the Reactive Layer for Autonomous Mobile Robots (자율이동로봇을 위한 반사층의 실시간 주행제어구조)

  • Kim, Hyung-Jin;Jeon, Sung-Yong;Sohn, Won-Jong;Hong, Keum-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1348-1357
    • /
    • 2006
  • In a hybrid three-layer control architecture(deliberative, sequencing, and reflexive), the lowest reflexive layer consists of resources, actions, an action coordinator, and motion controllers. Because the execution of individual components in the reflexive layer should be done in real-time, each component has to be simple and, due to this reason, the Linux-RTAI(Real-Time Application Interface for Linux) has been used as an operating system. In this paper, a navigation control architecture, which combines the components in the reflexive layer and the navigation-related modules in the sequencing layer, is proposed. And then, as basic components, four actions(Goto, Avoid, Move, and EmergencyStop) are designed. Experimental results confirm the effectiveness of the proposed architecture and the performance of individual associated actions.

Functionally Classified Framework based Navigation System for Indoor Service Robots (기능별로 분류된 프레임워크에 기반한 실내용 이동로봇의 주행시스템)

  • Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.720-727
    • /
    • 2009
  • This paper proposes a new integrated navigation system for a mobile robot in indoor environments. This system consists of five frameworks which are classified by function. This architecture can make the navigation system scalable and flexible. The robot can recover from exceptional situations, such as environmental changes, failure of entering the narrow path, and path occupation by moving objects, using the exception recovery framework. The environmental change can be dealt with using the probabilistic approach, and the problems with the narrow path and path occupation are solved using the ray casting algorithm and the Bayesian update rule. The proposed navigation system was successfully applied to several robots and operated in various environments. Experimental results showed good performance in that the exception recovery framework significantly increased the success rate of navigation. The system architecture proposed in this paper can reduce the time for developing robot applications through its reusability and changeability.

Existing System Improvement and Expected Configuration based on Risk Control Options for Implementation of e-Navigation

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • Common Maritime Data Structure (CMDS) is commonly used by shore and ship users in e-Navigation data domain. In the overarching of e-Navigation architecture, IHO uses S-1XX, a digital exchange standard for next-generation marine information, as data exchange standard. The current CMDS has the advantage of intuitively recognizing the overall structure of e-Navigation. However, it has disadvantage in that it does not allow stakeholders to easily understand benefits that e-Navigation can provide when implementing e-Navigation. In this study, the direction of improving existing system for effective e-Navigation implementation was proposed considering RCOs (Risk Control Options) with expected composition of ship/ shore/ communication system by sector.

Implementation of Hybrid Deliberative/Reactive Control Architecture for Autonomous Navigation of a Mobile Robot in Dynamic Environments (동적 환경에서 이동로봇의 자율주행을 위한 혼합 심의/반응 제어구조의 구현)

  • Nam Hwa-Sung;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.154-160
    • /
    • 2006
  • Instantaneous reaction and intelligence are required for autonomous mobile robots to achieve multiple goals in the unpredictable and dynamic environments. Design of the appropriate control architecture and clear definitions of systems are needed to construct and control these robots. This research proposes the hybrid deliberative/reactive control architecture which consists of three layers and uses the method of software structure design. The highest layer, Deliberative Layer makes the overall run-time schedule for navigation and/or manipulation, and the middle layer, Task Execution Layer carries out various missions. The lowest layer, Reactive Layer enables a robot to react rapidly in the dynamic environment and controls the mechanical devices concurrently. This paper proposes independent system supervisors called Manager to reuse the modules so that the Manager supports common use of the system and multi-processing tasks. It is shown that the mobile robot based on the proposed control scheme can perform the basic navigation and cope with the dynamic obstacles reasonably well.

Open-Architecture Hybrid Control System for Automatic Container Crane (컨테이너크레인의 개방형 하이브리드 제어시스템에 대한 연구)

  • 홍경태;홍금식
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.465-470
    • /
    • 2004
  • In this paper, an open architecture control system for automatic container cranes is investigated. A standard reference model for cranes, which consists of three modules; hardware module, operating system module, and application software module, is proposed. A hybrid control architecture combining deliberative and reactive controls for the autonomous operation of the cranes is proposed. The main contributions of this paper are as follows: First, a new reference platform for the crane control system is proposed. Second, by analyzing the structure of a container crane, implementation strategies for the automatic container crane are described.

  • PDF

A Real-Time Control Architecture for a Semi-Autonomous Underwater Vehicle (반자율 무인잠수정을 위한 실시간 제어 아키텍쳐)

  • LI JI-HONG;JEON BONG-HWAN;LEE PAN-MOOK;WON HONG-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.198-203
    • /
    • 2004
  • This paper describes a real-time control architecture for DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), which has been developed at Korea Research Institute of Ships & Ocean Engineering (KRISO), KORDI, for being a test-bed oj development of technologies for underwater navigation and manipulator operation. DUSAUV has three built-in computers, seven thrusters for 6 degree of freedom motion control, one 4-function electric manipulator, one pan/tilt unit for camera, one ballasting motor, built-in power source, and various sensors such as IMU, DVL, sonar, and so on. A supervisor control system for GUI and manipulator operation is mounted on the surface vessel and communicates with vehicle through a fiber optic link. Furthermore, QNX, one of real-time operating system, is ported on the built-in control and navigation computers of vehicle for real-time control purpose, while MicroSoft OS product is ported on the supervisor system for GUI programming convenience. A hierarchical control architecture which consist of three layers (application layer, real-time layer, and physical layer) has been developed for efficient control system of above complex underwater robotic system. The experimental results with implementation of the layered control architecture for various motion control of DUSAUV in a basin of KRISO is also provided.

  • PDF

Control System of Service Robot for Hospital (병원용 서비스 로봇의 제어시스템)

  • 박태호;최경현;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.540-544
    • /
    • 2001
  • This paper addresses a hybrid control architecture for the hospital service robot, SmartHelper. In hybrid architecture, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the hybrid architecture is verified.

  • PDF

Autonomous Wall-Following of Wheeled Mobile Robots using Hybrid Control Approach (차륜형 이동로봇의 자율 벽면-주행을 위한 하이브리드 제어)

  • Lim, Mee-Seub;Lim, Joon-Hong;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3105-3107
    • /
    • 1999
  • In this paper, we propose a new approach to autonomous wall-following of wheeled mobile robots using hybrid control system. The hybrid control approach IS introduced to the motion control of nonholonomic mobile robots in the Indoor navigation problems. In hybrid control architecture, the discrete states are defined by the user-defined constraints, and the reference motion commands are specified In the abstracted motions. The hybrid control system applied to motion planning and autonomous navigation with obstacle avoidance In indoor navigation problem. Simulation results show that it is an effective method for the autonomous navigation in indoor environments.

  • PDF

Navigation Sign Recognition in Indoor enviroments Using Fuzzy Inference (퍼지추론을 이용한 실내환경에서의 주행신호인식)

  • 김전호;유범재;조영조;박민용;고범석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.141-144
    • /
    • 1997
  • This paper presents a method of navigation sign recognition in indoor environments using a fuzzy inference for an autonomous mobile robot. In order to adapt to image deformation of a navigation sign resulted from variations of view-points and distances, a multi-labeled template matching(MLTM) method and a dynamic area search method(DASM) are proposed. The DASM is proposed to detect correct feature points among incorrect feature points. Finally sugeno-style fuzzy inference are adopted for recognizing the navigation sign.

  • PDF