• 제목/요약/키워드: Navier-Stokes-P1

검색결과 37건 처리시간 0.021초

3차원 비정렬격자계를 이용한 Navier-Stokes해의 Preconditioning에 관한 연구 (Study on Preconditioning of the clavier-Stokes Equations Using 3-Dimensional Unstructured Meshes)

  • 남영석;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1581-1593
    • /
    • 2001
  • An efficient variable-reordering method for finite element meshes is used and the effect of variable-reordering is investigated. For the element renumbering of unstructured meshes, Cuthill-McKee ordering is adopted. The newsy reordered global matrix has a much narrower bandwidth than the original one, making the ILU preconditioner perform bolter. The effect of variable reordering on the convergence behaviour of saddle point type matrix it studied, which results from P2/P1 element discretization of the Navier-Stokes equations. We also propose and test 'level(0) preconditioner'and 'level(2) ILU preconditioner', which are another versions of the existing 'level(1) ILU preconditioner', for the global matrix generated by P2/P1 finite element method of incompressible Navier-Stokes equations. We show that 'level(2) ILU preconditioner'performs much better than the others only with a little extra computations.

이산화된 Navier-Stokes 방정식의 영역분할법을 위한 병렬 예조건화 (Parallel Preconditioner for the Domain Decomposition Method of the Discretized Navier-Stokes Equation)

  • 최형권;유정열;강성우
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.753-765
    • /
    • 2003
  • A finite element code for the numerical solution of the Navier-Stokes equation is parallelized by vertex-oriented domain decomposition. To accelerate the convergence of iterative solvers like conjugate gradient method, parallel block ILU, iterative block ILU, and distributed ILU methods are tested as parallel preconditioners. The effectiveness of the algorithms has been investigated when P1P1 finite element discretization is used for the parallel solution of the Navier-Stokes equation. Two-dimensional and three-dimensional Laplace equations are calculated to estimate the speedup of the preconditioners. Calculation domain is partitioned by one- and multi-dimensional partitioning methods in structured grid and by METIS library in unstructured grid. For the domain-decomposed parallel computation of the Navier-Stokes equation, we have solved three-dimensional lid-driven cavity and natural convection problems in a cube as benchmark problems using a parallelized fractional 4-step finite element method. The speedup for each parallel preconditioning method is to be compared using upto 64 processors.

LOCAL REGULARITY CRITERIA OF THE NAVIER-STOKES EQUATIONS WITH SLIP BOUNDARY CONDITIONS

  • Bae, Hyeong-Ohk;Kang, Kyungkeun;Kim, Myeonghyeon
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.597-621
    • /
    • 2016
  • We present regularity conditions for suitable weak solutions of the Navier-Stokes equations with slip boundary data near the curved boundary. To be more precise, we prove that suitable weak solutions become regular in a neighborhood boundary points, provided the scaled mixed norm $L^{p,q}_{x,t}$ with 3/p + 2/q = 2, $1{\leq}q$ < ${\infty}$ is sufficiently small in the neighborhood.

FINITE ELEMENT ANALYSIS FOR A MIXED LAGRANGIAN FORMULATION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Kim, Hong-Chul
    • 대한수학회지
    • /
    • 제34권1호
    • /
    • pp.87-118
    • /
    • 1997
  • This paper is concerned with a mixed Lagrangian formulation of the wiscous, stationary, incompressible Navier-Stokes equations $$ (1.1) -\nu\Delta u + (u \cdot \nabla)u + \nabla_p = f in \Omega $$ and $$ (1.2) \nubla \cdot u = 0 in \Omega $$ along with inhomogeneous Dirichlet boundary conditions on a portion of the boundary $$ (1.3) u = ^{0 on \Gamma_0 _{g on \Gamma_g, $$ where $\Omega$ is a bounded open domain in $R^d, d = 2 or 3$, or with a boundary $\Gamma = \partial\Omega$, which is composed of two disjoint parts $\Gamma_0$ and $\Gamma_g$.

  • PDF

Rate of Convergence in Inviscid Limit for 2D Navier-Stokes Equations with Navier Fricition Condition for Nonsmooth Initial Data

  • Kim, Namkwon
    • 통합자연과학논문집
    • /
    • 제6권1호
    • /
    • pp.53-56
    • /
    • 2013
  • We are interested in the rate of convergence of solutions of 2D Navier-Stokes equations in a smooth bounded domain as the viscosity tends to zero under Navier friction condition. If the initial velocity is smooth enough($u{\in}W^{2,p}$, p>2), it is known that the rate of convergence is linearly propotional to the viscosity. Here, we consider the rate of convergence for nonsmooth velocity fields when the gradient of the corresponding solution of the Euler equations belongs to certain Orlicz spaces. As a corollary, if the initial vorticity is bounded and small enough, we obtain a sublinear rate of convergence.

P2P1/P1P1 유한요소 공식을 이용한 비압축성 Navier-Stokes 방정식의 분리 해법에 대한 연구 (STUDY ON THE SPLITTING ALGORITHMSOF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS USING P1P1/P2P1 FINITE ELEMENT FORMULATION)

  • 조명환;최형권;유정열;박재인
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.117-124
    • /
    • 2005
  • Splitting algorithms of the incompressible Navier-Stokes equations using P1P1/P2P1 finite element formulation are newly proposed. P1P1 formulation allocates velocity and pressure at the same nodes, while P2P1 formulation allocates pressure only at the vertex nodes and velocity at both the vertex and mid nodes. For comparison of the elapsed time and accuracy of the two methods, they have been applied to the well-known benchmark problems. The three cases chosen are the two-dimensional steady and unsteady flows around a fixed cylinder, decaying vortex, and impinging slot jet. It is shown that the proposed P2P1 semi-splitting method performs better than the conventional P1P1 splitting method in terms of both accuracy and computation time.

  • PDF

P2P1 유한요소를 이용한 비압축성 Navier-Stokes 방정식 해법들의 행렬 특성 (CHARACTERISTICS OF MATRICES IN THE P2P1 FINITE ELEMENT METHODS FOR SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATION)

  • 조명환;최형권;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.245-251
    • /
    • 2009
  • Numerical algorithms for solving the incompressible Navier-Stokes equations using P2P1 finite element are compared regarding the eigenvalues of matrices. P2P1 element allocates pressure at vertex nodes and velocity at both vertex and mid nodes. Therefore, compared to the P1P1 element, the number of pressure variables in the P2P1 element decreases to 1/4 in the case of two-dimensional problems and to 1/8 in the three-dimensional problems. Fully-implicit-integrated, semi-implicit- integrated and semi-segregated finite element formulations using P2P1 element are compared in terms of elapsed time, accuracy and eigenvlue distribution (condition number). For the comparison,they have been applied to the well-known benchmark problems. That is, the two-dimensional unsteady flows around a fixed circular cylinder and decaying vortex flow are adopted to check spatial accuracy.

  • PDF

P1 비순응 요소를 이용한 비압축성 유동 문제의 위상최적화 (Topology Optimization of Incompressible Flow Using P1 Nonconforming Finite Elements)

  • 장강원;장세명
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1139-1146
    • /
    • 2012
  • P1 비순응 요소를 이용하여 정상 비압축성 Navier-Stokes 유동의 위상최적화 문제를 푸는 방법을 제시한다. 본 연구는 Stokes 유동의 위상최적화 문제에 P1 비순응 요소를 적용하여 그 수치적 효용성을 보인바 있는 이전 연구에 대한 후속 연구이다. 비압축성 물질 해석에서 잠김현상이 발생하지 않으며 선형형상함수를 가지는 P1 비순응 요소의 장점이 관성항을 가지는 유체 문제의 해석과 설계에도 유효한 지를 파악하고자 한다. 일반적으로 사용되는 혼합정식화법과 비교하여 P1 비순응 요소의 사용은 벌칙 함수를 이용하여 연속 방정식을 따로 사용하지 않고 운동방정식에 부과할 수 있기 때문에 자유도의 개수를 감소시킬 수 있다. 벌칙 파라미터가 해의 정확도에 주는 영향과 적정 범위는 수치적으로 검토하도록 한다. 또한 보통의 사각 비순응 요소들이 요소면의 중앙에 절점을 가지고 고차의 형상함수를 지니는데 비하여, 본 연구에서 제시하는 P1 비순응 요소는 요소의 꼭지점에 절점을 가지고 {1, x, y}의 P1 형상함수로 구성됨으로써 수치적인 구현의 용이함이 일반 선형 사절점 요소와 동일하다. 제안한 방법의 효용성을 다양한 레이놀즈수에 따른 유동최적화 문제들을 살펴봄으로써 검증하도록 한다.

P1P1/P2P1 유한요소 공식을 이용한 배압축성 Navier-Stokes 방정식의 분리 해법에 대한 연구 (Study on the Segregation Algorithms of the Incompressible Navier-Stokes Equations Using P1P1/P2P1 Finite Element Formulation)

  • 최형권;유정열;박재인;조명환
    • 대한기계학회논문집B
    • /
    • 제30권3호
    • /
    • pp.262-269
    • /
    • 2006
  • Segregation algorithms of the incompressible Wavier-Stokes equations using P1P1/P2P1 finite element formulation are newly proposed. P1P1 formulation allocates velocity and pressure at the same nodes, while P2P1 formulation allocates pressure only at the vertex nodes and velocity at both the vertex and the midpoint nodes. For a comparison of both the elapsed time and the accuracy between the two methods, they have been applied to the well-known benchmark problems. The three cases chosen are the two-dimensional steady and unsteady flows around a fixed cylinder, decaying vortex, and impinging slot jet. It is shown that the proposed P2P1 semi-segregation algorithm performs better than the conventional P1P1 segregation algorithm in terms of both accuracy and computation time.