• 제목/요약/키워드: Navier-Stokes equation Navier-Stokes

검색결과 749건 처리시간 0.023초

A Comparison Study Between Navier-Stokes Equation and Reynolds Equation in Lubricating Flow Regime

  • Song, Dong-Joo;Seo, Duck-Kyo;William W. Schultz
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.599-605
    • /
    • 2003
  • For practical calculations, the Reynolds equation is frequently used to analyze the lubricating flow. The full Navier-Stokes Equations are used to find validity limits of Reynolds equation in a lubricating flow regime by result comparison. As the amplitude of wavy upper wall increased at a given average channel height, the difference between Navier-Stokes and lubrication theory decreased slightly : however, as the minimum distance in channel throat increased, the differences in the maximum pressure between Navier-Stokes and lubrication theory became large.

정상 평면충격파에 대한 Navier-Stokes 방정식의 적용한계에 관한 열역학적 연구 (Thermodynamic Study on the Limit of Applicability of Navier-Stokes Equation to Stationary Plane Shock-Waves)

  • 오영기
    • 대한화학회지
    • /
    • 제40권6호
    • /
    • pp.409-414
    • /
    • 1996
  • 선형 비평형 열역학의 최소 엔트로피 생성원리를 사용하여 정상 평면충격파 형상에 대한 Navier-Stokes 유체방정식의 적용한계를 연구하였다. 해석적 결과를 얻기 위하여 평형상태에 가까운 하류 위치에서 방정식을 선형화 하였다. 하류 극한의 경계조건을 충족하는 Navier-Stokes 방정식의 해를 충격파 진행속도의 마하수 M=1 근처에서 급수전개하였을 때, 일차항까지는 열역학의 요구조건과 부합하였다.

  • PDF

DERIVATION OF THE g-NAVIER-STOKES EQUATIONS

  • Roh, Jaiok
    • 충청수학회지
    • /
    • 제19권3호
    • /
    • pp.213-218
    • /
    • 2006
  • The 2D g-Navier-Stokes equations are a certain modified Navier-Stokes equations and have the following form, $$\frac{{\partial}u}{{\partial}t}-{\nu}{\Delta}u+(u{\cdot}{\nabla})u+{\nabla}p=f$$, in ${\Omega}$ with the continuity equation ${\nabla}{\cdot}(gu)=0$, in ${\Omega}$, where g is a suitable smooth real valued function. In this paper, we will derive 2D g-Navier-Stokes equations from 3D Navier-Stokes equations. In addition, we will see the relationship between two equations.

  • PDF

Navier-Stokes 방정식과 난류모델 방정식의 연계방법 비교 (COMPARISON OF COUPLING METHODS FOR NAVIER-STOKES EQUATIONS AND TURBULENCE MODEL EQUATIONS)

  • 이승수;류세현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.111-116
    • /
    • 2005
  • Two coupling methods for the Navier-Stokes equations and a two-equation turbulence model equations are compared. They are the strongly coupled method and the loosely coupled method. The strongly coupled method solves the Navier-Stokes equations and the two-equation turbulence model equations simultaneously, while the loosely coupled method solves the Navier-Stokes equation with the turbulence viscosity fixed and subsequently solves the turbulence model equations with all the flow quantities fixed. In this paper, performances of two coupling methods are compared for two and three-dimensional problems.

  • PDF

이산화된 Navier-Stokes 방정식의 영역분할법을 위한 병렬 예조건화 (Parallel Preconditioner for the Domain Decomposition Method of the Discretized Navier-Stokes Equation)

  • 최형권;유정열;강성우
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.753-765
    • /
    • 2003
  • A finite element code for the numerical solution of the Navier-Stokes equation is parallelized by vertex-oriented domain decomposition. To accelerate the convergence of iterative solvers like conjugate gradient method, parallel block ILU, iterative block ILU, and distributed ILU methods are tested as parallel preconditioners. The effectiveness of the algorithms has been investigated when P1P1 finite element discretization is used for the parallel solution of the Navier-Stokes equation. Two-dimensional and three-dimensional Laplace equations are calculated to estimate the speedup of the preconditioners. Calculation domain is partitioned by one- and multi-dimensional partitioning methods in structured grid and by METIS library in unstructured grid. For the domain-decomposed parallel computation of the Navier-Stokes equation, we have solved three-dimensional lid-driven cavity and natural convection problems in a cube as benchmark problems using a parallelized fractional 4-step finite element method. The speedup for each parallel preconditioning method is to be compared using upto 64 processors.

부분 포물형 Navier-Stokes 방정식을 이용한 비압축성 이차원 박리유동 계산 (Calculation of two-dimensional incompressible separated flow using parabolized navier-stokes equations)

  • 강동진;최도형
    • 대한기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.755-761
    • /
    • 1987
  • 본 연구에서는 익형 위에 발생하는 박리기포 주위를 사용한 박리기포 주위 유 동해석에 목적을 두고, 원시변수(primitive variable)를 사용한 부분 포물형 Navier -Stokes 방정식을 사용하여 층류유동에 관한 간단한 기본계산을 통해 비교적 박리기포 가 큰 외부유동(external flow)에도 부분 포물형 방정식이 적용될 수 있음을 보이고자 한다.수치해법은 Galpin 등 이 이차원 관유동(channel flow)에 완전 Navier-Stokes 방정식의 해법으로 사용한 CELS(coupled equation line solver) 방법을 부분 포물형 방정식에 적합하게 수정하여 사용하였다.

스풀밸브 해석에서 Navier-Stokes 방정식과 Reynolds 방정식에 의한 비교 연구 (A Comparative Study of the Navier-Stokes Equation & the Reynolds Equation in Spool Valve Analysis)

  • 홍성호;손상익;김경웅
    • Tribology and Lubricants
    • /
    • 제28권5호
    • /
    • pp.218-232
    • /
    • 2012
  • In a spool valve analysis, the Reynolds equation is commonly used to investigate the lubrication characteristics. However, the validity of the Reynolds equation is questionable in a spool valve analysis because cavitation often occurs in the groove and the depth of the groove is much higher than the clearance in most cases. Therefore, the validity of the Reynolds equation in a spool valve analysis is investigated by comparing the results obtained from the Reynolds equation and the Navier-Stokes equation. Dimensionless parameters are determined from a nondimensional form of the governing equations. The differences between the lateral force, friction force, and volume flow rate (leakage) obtained by the Reynolds equation and those obtained by the Navier-Stokes equation are discussed. It is shown that there is little difference (less than 10%), except in the case of a spool valve with many grooves where no cavitation occurs in the grooves. In most cases, the Reynolds equation is effective for a spool valve analysis under a no cavitation condition.