• Title/Summary/Keyword: Navier's solutions

검색결과 121건 처리시간 0.018초

境界積分法에 의한 軸對稱 彈性 問題의 解析 (Boundary Integral Equation Analysis of Axisymmetric Linear Elastic Problems)

  • 공창덕;김진우
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.787-797
    • /
    • 1986
  • 본 논문에서는 축대칭 선형 문제의 경계적분법에 대한 일반화한 정식화 과정 및 수치적 접근방법이 제시되었으며 정식화 과정 중 Navier 방정식의 기본해로부터 도 출되는 변위 및 표면적 Kernel을 구하는 Hankel 변환법을 이용한 $\ulcorner$직접축대칭접근법 $\lrcorner$과 3차원 Kevin 해로부터 원주경로 따라 적분한 $\ulcorner$3차원 접근법$\lrcorner$이 비교 검토되었 다.

Numerical simulation of the flow in pipes with numerical models

  • Gao, Hongjie;Li, Xinyu;Nezhad, Abdolreza Hooshmandi;Behshad, Amir
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.523-527
    • /
    • 2022
  • The objective of this study is to simulate the flow in pipes with various boundary conditions. Free-pressure fluid model, is used in the pipe based on Navier-Stokes equation. The models are solved by using the numerical method. A problem called "stability of pipes" is used in order to compare frequency and critical fluid velocity. When the initial conditions of problem satisfied the instability conditions, the free-pressure model could accurately predict discontinuities in the solution field. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The results of this paper are analyzed by hyperbolic numerical method. Results show that the level of numerical diffusion in the solution field and the range of well-posedness are two important criteria for selecting the two-fluid models. The solutions for predicting the flow variables is approximately equal to the two-pressure model 2. Therefore, the predicted pressure changes profile in the two-pressure model is more consistent with actual physics. Therefore, in numerical modeling of gas-liquid two-phase flows in the vertical pipe, the present model can be applied.

A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates

  • Bourada, Fouad;Amara, Khaled;Bousahla, Abdelmoumen A.;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.661-675
    • /
    • 2018
  • In this paper, buckling analysis of hybrid functionally graded plates using a novel four variable refined plate theory is presented. In this theory the distribution of transverse shear deformation is parabolic across the thickness of the plate by satisfying the surface conditions. Therefore, it is unnecessary to use a shear correction factor. The variations of properties of the plate through the thickness are according to a symmetric sigmoid law (symmetric S-FGM). The principle virtual works is used herein to extract equilibrium equations. The analytical solution is determined using the Navier method for a simply supported rectangular plate subjected to axial forces. The precision of this theory is verified by comparing it with the various solutions available in the literature.

On the modeling of dynamic behavior of composite plates using a simple nth-HSDT

  • Djedid, I. Klouche;Draiche, Kada;Guenaneche, B.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.371-387
    • /
    • 2019
  • In the present paper, a simple refined nth-higher-order shear deformation theory is applied for the free vibration analysis of laminated composite plates. The proposed displacement field is based on a novel kinematic in which include the undetermined integral terms and contains only four unknowns, as against five or more in case of other higher-order theories. The present theory accounts for adequate distribution of the transverse shear strains through the plate thickness and satisfies the shear stress-free boundary conditions on the top and bottom surfaces of the plate, therefore, it does not require problem dependent shear correction factor. The governing equations of motion are derived from Hamilton's principle and solved via Navier-type to obtain closed form solutions. The numerical results of non-dimensional natural frequencies obtained by using the present theory are presented and compared with those of other theories available in the literature to verify the validity of present solutions. It can be concluded that the present refined theory is accurate and efficient in predicting the natural frequencies of isotropic, orthotropic and laminated composite plates.

Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions

  • Benhenni, Mohammed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Abbes, Fazilay;Li, Yuming;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.535-549
    • /
    • 2019
  • This study aimed to develop a high-order shear deformation theory to predict the free vibration of hybrid cross-ply laminated plates under different boundary conditions. The equations of motion for laminated hybrid rectangular plates are derived and obtained by using Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle-ply laminates are obtained by using Navier's solution. To assess the validity of our method, we used the finite element method. Firstly, the analytical and the numerical implementations were validated for an antisymmetric cross-ply square laminated with available results in the literature. Then, the effects of side-to-thickness ratio, aspect ratio, lamination schemes, and material properties on the fundamental frequencies for different combinations of boundary conditions of hybrid composite plates are investigated. The comparison of the analytical solutions with the corresponding finite element simulations shows the good accuracy of the proposed analytical closed form solution in predicting the fundamental frequencies of hybrid cross-ply laminated plates under different boundary conditions.

화염배출 출구면적 변화에 대한 수직발사관 내부 초음속 충돌유동의 수치적 해석 (NUMERICAL INVESTIGATIONS OF SUPERSONIC JET IMPINGEMENT ON A FLAT WALL IN A CONFINED PLENUM)

  • 이광섭;홍승규;안창수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.281-285
    • /
    • 2005
  • Viscous solutions of supersonic jet impinging on a flat wall in a confined plenum are simulated using three-dimensional Navier-Stokes solver. A confined plenum was designed for simulating the missile launch and analyzing the behavior of the exhaust plume, which were accompanied by complex flow interactions with shock and boundary layer. Concerns of this paper are to show accurate simulation of internal flow in confined plenum and to demonstrate the jet flow structure when the jet interacts with a small opening on the side. Objectives of this numerical simulation are to understand the effect of changing the plume exit area of the plenum. Pressure and temperature rise at certain position in the plenum are traced and compared with test data.

  • PDF

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권6호
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

나노 스케일 판의 좌굴해석을 위한 비국소 탄성 이론의 적용 (Application of nonlocal elasticity theory for buckling analysis of nano-scale plates)

  • 이원홍;한성천;박원태
    • 한국산학기술학회논문지
    • /
    • 제13권11호
    • /
    • pp.5542-5550
    • /
    • 2012
  • Eringen의 비국소 탄성이론을 이용한 3차 전단변형이론을 정식화 하였고 비국소 탄성이론이 적용된 평형방정식을 유도하였다. 비국소 탄성 이론은 미소 규모 효과를 고려할 수 있고 3차원 전단변형이론은 나노 판의 두께방향으로의 전단변형률과 전단응력의 곡선변화 효과를 고려할 수 있다. 모든 변이 단순지지된 나노-스케일 판의 지배방정식을 풀기 위해 Navier 방법을 사용하였다. 비국소 변수의 효과를 나타내기 위한 나노-스케일 판의 해석적 좌굴하중을 제시하였다. 국소 탄성이론과의 관계를 수치해석 결과를 통하여 고찰하였다. 또한 (i) 나노-스케일 판의 크기, (ii) 비국소 계수, (iii) 형상비 그리고 (iv) 모드 수 등이 나노-스케일 판의 무차원 좌굴하중에 미치는 효과에 대하여 관찰하였다. 본 연구의 결과를 검증하기 위해 참고문헌의 결과들과 비교 분석하였으며 해석결과는 참고문헌의 결과들과 잘 일치함을 알 수 있었다. 비국소 이론에 의한 나노-스케일 판의 좌굴해석에 관한 연구는 향후 관련연구에 비교자료로 활용될 수 있을 것이다.

비구조 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석 (Implicit Incompressible flow solver on Unstructured Hybrid grids)

  • 김종태;김용모;맹주성
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.48-54
    • /
    • 1998
  • Three-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method is used for time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetrahedra, prisms, pyramids, hexahedra, or mixed-element grid. The numerical efficiency and accuracy of the present method is critically evaluated for several example problems.

  • PDF

An analytical solution for bending and vibration responses of functionally graded beams with porosities

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.329-342
    • /
    • 2017
  • This work presents a static and free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. A new displacement field containing integrals is proposed which involves only three variables. Based on the suggested theory, the equations of motion are derived from Hamilton's principle. This theory involves only three unknown functions and accounts for parabolic distribution of transverse shear stress. In addition, the transverse shear stresses are vanished at the top and bottom surfaces of the beam. The Navier solution technique is adopted to derive analytical solutions for simply supported beams. The accuracy and effectiveness of proposed model are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the deflections, stresses and natural frequencies on the bending and free vibration responses of functionally graded beams.