• Title/Summary/Keyword: Naval ships

Search Result 1,231, Processing Time 0.024 seconds

A numerical simulation method for the flow around floating bodies in regular waves using a three-dimensional rectilinear grid system

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.277-300
    • /
    • 2016
  • The motion of a floating body and the free surface flow are the most important design considerations for ships and offshore platforms. In the present research, a numerical method is developed to simulate the motion of a floating body and the free surface using a fixed rectilinear grid system. The governing equations are the continuity equation and Naviere-Stokes equations. The boundary of a moving body is defined by the interaction points of the body surface and the centerline of a grid. To simulate the free surface the Modified Marker-Density method is implemented. Ships advancing in regular waves, the interaction of waves by a fixed circular cylinder array and the response amplitude operators of an offshore platform are simulated and the results are compared with published research data to check the applicability. The numerical method developed in this research gives results good enough for application to the initial design stage.

Modeling and testing for hydraulic shock regarding a valve-less electro-hydraulic servo steering device for ships

  • Jian, Liao;Lin, He;Rongwu, Xu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.318-326
    • /
    • 2015
  • A valve-less electro-hydraulic servo steering device (short: VSSD) for ships was chosen as a study object, and its mathematic model of hydraulic shock was established on the basis of flow properties and force balance of each component. The influence of system structure parameters, changing rate of motor speed and external load on hydraulic shock strength was simulated by the method of numerical simulation. Experiment was designed to test the hydraulic shock mathematic model of VSSD. Experiment results verified the correctness of the model, and the model provided a correct theoretical method for the calculation and control of hydraulic shock of valve-less electro-hydraulic servo steering device.

Hull form design for the fore-body of medium-sized passenger ship with gooseneck bulb

  • Yu, Jin-Won;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.577-587
    • /
    • 2017
  • The recent IMO MEPC regulation on EEDI, EEOI and increased fuel cost has worsened the financial condition of the small and medium sized passenger ferry companies, and it is situated to acquire the economic ships with a pretty high resistance performance. The purpose of this research is to develop a design method on the efficient gooseneck bulb for the middle-sized passenger ferry operated in the Far East Asian seas. The hull forms are designed by varying the gooseneck bulb parameters to find the changes on the resistance performance according to the shape of bulb. The numerical series tests are made to derive the regression equation for estimating the resistance through analyzing the data statistically. This equation is set as an objective function, and then using the optimization algorithm searches for the optimal combination of the design variables. After a hull form is designed corresponding to optimized parameters.

Hydrodynamic design of an underwater hull cleaning robot and its evaluation

  • Lee, Man Hyung;Park, Yu Dark;Park, Hyung Gyu;Park, Won Chul;Hong, Sinpyo;Lee, Kil Soo;Chun, Ho Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.335-352
    • /
    • 2012
  • An underwater hull cleaning robot can be a desirable choice for the cleaning of large ships. It can make the cleaning process safe and economical. This paper presents a hydrodynamic design of an underwater cleaning robot and its evaluation for an underwater ship hull cleaning robot. The hydrodynamic design process of the robot body is described in detail. Optimal body design process with compromises among conflicting design requirements is given. Experimental results on the hydrodynamic performance of the robot are given.

Application of fin system to reduce pitch motion

  • Reguram, B. Rajesh;Surendran, S.;Lee, Seung Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.409-421
    • /
    • 2016
  • Container ships are prone to move at a greater speed compared to other merchant ships. The slenderness of the hull of container vessel is for better speed, but it leads to unfavorable motions. The pitch and roll are related and sometimes the vessel might be forced to parametric roll condition which is very dangerous. A fin attached to the ship hull proves to be more efficient in controlling the pitch. The fin is fitted at a lowest possible location of the hull surface and it is at the bow part of the ship. Simulations are done using proven software package ANSYS AQWA and the results are compared. Simulations are done for both regular and irregular seas and the effect of fin on ship motion is studied. P-M spectrum is considered for various sea states.

Numerical Study on the Extrapolation Method for Predicting the Full-scale Resistance of a Ship with an Air Lubrication System

  • Kim, Dong-Young;Ha, Ji-Yeon;Paik, Kwang-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.387-393
    • /
    • 2020
  • Frictional resistance comprises more than 60% of the total resistance for most merchant ships. Active and passive devices have been used to reduce frictional resistance, but the most effective and practical device is an air lubrication system. Such systems have been applied in several ships, and their effects have been verified in sea trials. On the other hand, there are some differences between the results predicted in model tests and those measured in sea trials. In this study, numerical analyses were carried out for a model and a full-scale ship. A new extrapolation method was proposed to improve the estimation of the full-scale resistance of a ship with an air lubrication system. The volume of fluid (VOF) method was considered for the numerical models of the air layer. The numerical method was validated by comparing the experimental data on the air layer pattern and the total resistance.

Hydrodynamic optimization of twin-skeg LNG ships by CFD and model testing

  • Kim, Keunjae;Tillig, Fabian;Bathfield, Nicolas;Liljenberg, Hans
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.392-405
    • /
    • 2014
  • SSPA experiences a growing interest in twin skeg ships as one attractive green ship solution. The twin skeg concept is well proven with obvious advantages for the design of ships with full hull forms, restricted draft or highly loaded propellers. SSPA has conducted extensive hull optimizations studies of LNG ships of different size based on an extensive hull data base with over 7,000 models tested, including over 400 twin skeg hull forms. Main hull dimensions and different hull concepts such as twin skeg and single screw were of main interest in the studies. In the present paper, one twin skeg and one single screw 170 K LNG ship were designed for optimally selected main dimension parameters. The twin skeg hull was further optimized and evaluated using SHIPFLOW FRIENDSHIP design package by performing parameter variation in order to modify the shape and positions of the skegs. The finally optimized models were then built and tested in order to confirm the lower power demand of twin skeg designed compaed with the signle screw design. This paper is a full description of one of the design developments of a LNG twin skeg hull, from early dimensional parameter study, through design optimization phase towards the confirmation by model tests.

Numerical Study on the Hydroelastic Response of the Very Large floating Structure Considering Sea-Bottom Topography (해저 지형을 고려한 초대형 부유체의 유탄성 거동 해석)

  • Kyoung, Jo-Hyun;Kim, Byoung-Wan;Cho, Seok-Hyu;Hong, Sa-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.357-367
    • /
    • 2005
  • A numerical method is developed for the hydroelastic response of the Very Large Floating Structure considering the sea-bottom topography. The sea-bottom effects on the hydroelastic response of the floating structure is studied. The sea-bottom topography should be considered when the floating structure is constructed near the shore. To investigate the sea-bottom effects, four different sea-bottom topographies are considered in this study. finite-element method based on the variational formulation is used in the fluid domain, The pontoon-type floating structure is modeled as the Kirchhoff plate. The mode superposition method is adopted for the hydroelastic behavior of the floating structure.

Development of Stand-alone Performance Test System for an Intake-diffuser of the Waterjet Propulsion (Waterjet 추진장치의 흡입구유도관 단독성능 시험기법 개발)

  • Ahn Jong-Woo;Kim Ki-Sup;Park Young-Ha;Kim Kyung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.15-23
    • /
    • 2004
  • In order to investigate efficiency and flowfield charateristics of the intake-diffuser for the ship waterjet propulsion, new experimental verification technology was set up in the cavitation tunnel. 1-hole and 5-hole pilot tubes were designed and manufactured to measure the pressure and velocity distributions at intake-diffuser entrance and impeller inlet. The calibration of the 5-hole pilot tubes is conducted at the cavitation tunnel The cavitation inception occurs at the intake lip, and the occurrence position depends on IVR (Inlet Velocity Ratio) condition. The present experimental device will be applied sufficiently for the development of the design and performance improvement technologies.

Experimental Study on a Dolphin-Fender Mooring System for Pontoon-Type Structure (초대형 부유식 구조물의 돌핀-펜더계류시스템에 관한 실험연구)

  • Kim, Jin-Ha;Cho, Seok-Kyu;Hong, Sa-Young;Kim, Young-Shik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.43-49
    • /
    • 2005
  • in this paper a dolphin-fender moored pontoon-type floating structure in shallow water depth is studied focusing on mooring force. The pontoon-type floating structure is 500m long, 300m wide. The structure has partially non-uniform drafts of 2.0m and 3.0m. The employed mooring system is a guyed frame type dolphin-fender system. The 1/125 scale model fender system is made of rubber tube to have hi-linear load deflection characteristics. A series of model tests has been conducted focusing on motion and fender force responses in regular and irregular waves at KRISO's ocean engineering basin Non-linear numerical simulation of fender reaction force has been carried out and the results are compared with those of model tests. The simulated rigid body motion and mooring forces also have been compared with the test results.