• Title/Summary/Keyword: Nature Element

Search Result 473, Processing Time 0.029 seconds

A Parallel Computation of Finite Element Analysis on a Transputer System (트랜스퓨터를 이용한 유안영속해석의 병렬계산)

  • Kim, Keun-Hwan;Choi, Kyung;Jung, Hyun-Kyo;Lee, Ki-Sik;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.735-741
    • /
    • 1992
  • This paper presents a parallel algorithm for the finite element analysis using relatively inexpensive transputer parallel system. The substructure method, which is highly parallel in nature, is used to improve the parallel computing efficiency by splitting up the whole structure into substructures. The proposed algorithm is applied to a simple two-dimensional magnetostatic problem. It is found that the more the number of transputer is increased, the more the total computation time is reduced. And the computational efficiency becomes better as the number of internal boundary nodes becomes smaller.

  • PDF

A Comparative Study on $CO_2$ Amount of Construction-Materials (건축 구조 재료별 $CO_2$ 발생량 비교 연구)

  • Oh, Myoung-Ho;Han, Yong-Sup;Cho, Kwang-Moon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.375-377
    • /
    • 2007
  • The purpose of this study was to investigate total $CO_2$ amount of steel and reinforced concrete construction, and compare and analyze $CO_2$ amount on construction-material. And then it was studied about new element that environment compatibility of architecture structure design based on paradigm of environment age. Architecture action should have proceeded course that reduce burden of the earth environment in relation between architecture and environment and increase contact of human and nature. As environment compatibility development is emphasized with architecture development, architecture structure design give improvement of one important element that environment compatibility except stability, function, economy and necessary propriety of environment compatability of construction design.

  • PDF

Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads

  • Chinnapandi, Lenin Babu Mailan;Pitchaimani, Jeyaraj;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.829-843
    • /
    • 2022
  • This manuscript work presents a comprehensive continuum model capable to investigate the effect of porosity on vibro-acoustic behaviour of functionally graded (FG) beams resting on an elastic foundation subjected to thermal and mechanical loadings. Effects of uniform temperature rise and edge compressive load on the sound radiation characteristics are studied in a comparative manner. The numerical analysis is carried out by combining finite element method with Rayleigh's integral. Detailed parametric studies are accomplished, and influences of power law index, porosity volume, porosity distribution and boundary conditions on the vibro-acoustic response characteristics are analyzed. It is found that the vibro-acoustic response under mechanical edge compression is entirely different compared to from that under the thermal load. Furthermore, nature of grading of porosity affects the sound radiation behaviour for both the loads. The proposed model can be used to obtain the suppression performance of vibration and noise FG porous beams under thermal and mechanical loads.

Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method (강건 절점위치 유한요소법을 이용한 수중 예인 케이블의 비선형 거동해석)

  • Lee, Euntaek;Go, Gwangsoo;Ahn, Hyung Taek;Kim, Seongil;Chun, Seung Yong;Kim, Jung Suk;Lee, Byeong Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.388-399
    • /
    • 2016
  • A motion analysis of an underwater towed cable is a complex task due to its nonlinear nature of the problem. The major source of the nonlinearity of the underwater cable analysis is that the motion of the cable involves large rigid-body motion. This large rigid-body motion makes difficult to use standard displacement-based finite element method. In this paper, the authors apply recently developed nodal position-based finite element method which can deal with the geometric nonlinearity due to the large rigid-body motion. In order to enhance the stability of the large-scale nonlinear cable motion simulation, an efficient time-integration scheme is proposed, namely predictor/multi-corrector Newmark scheme. Three different predictors are introduced, and the best predictor in terms of stability and robustness for impulsive cable motion analysis is proposed. As a result, the nonlinear motion of underwater cable is predicted in a very efficient manner compared to the classical finite element of finite difference methods. The efficacy of the method is demonstrated with several test cases, involving static and dynamic motion of a single cable element, and also under water towed cable composed of multiple cable elements.

Evaluation of Crack-tip Cohesive Laws for the Mode I Fracture of the Graphene from Molecular Dynamics Simulations (그래핀의 모드 I 균열에 대한 분자동역학 해석으로부터 균열 선단 응집 법칙의 평가)

  • Kim, Hyun-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.393-399
    • /
    • 2013
  • In this paper, a novel approach to estimate cohesive laws for the mode I fracture of the graphene is presented by combining molecular dynamic simulations and an inverse algorithm based on field projection method and finite element method. The determination of crack-tip cohesive laws of the graphene based on continuum mechanics is a non-trivial inverse problem of finding unknown tractions and separations from atomic simulations. The displacements of molecular dynamic simulations in a region far away from the crack tip are transferred to finite element nodes by using moving least square approximation. Inverse analyses for extracting unknown cohesive tractions and separation behind the crack tip can be carried out by using conservation nature of the interaction J- and M-integrals with numerical auxiliary fields which are generated by systematically imposing uniform surface tractions element-by-element along the crack surfaces in finite element models. The preset method can be a very successful approach to extract crack-tip cohesive laws from molecular dynamic simulations as a scale bridging method.

The Nature of Science Reflected in Exhibitions of Natural History Museums (자연사박물관의 전시에 반영된 과학의 본성)

  • Lee Sun-Kyung;Shin Myeong-Kyeong;Kim Chan-Jong
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.376-386
    • /
    • 2005
  • This study investigated to describe how the nature of science is revealed in the four natural history museums in Korea. Natural history museums are well considered as informal settings of education, and the nature of science has been one of major topics stressed in science education. Therefore, the revelation of this topic is supposedly reflected in developing museum exhibitions. In each of the four target natural history museum or natural history exhibition, the representative exhibits subtitled by scientific inquiry and cases dealing with history of science were selected for the study. The analyzing exhibits focused on whether exhibitions were labeled with emphasis on declarative description or interpretative one. In analyzing the contents, the focus was on the concerns of scientists, scientific community, social and cultural aspects, uncertainty of scientific knowledge, and providing sufficient evidences. All things considered, it was hard to conclude that every target exhibit clearly considered the nature of science as an essential element, in designing and developing their exhibitions. More deliberate input of nature of science is suggested for worldly renowned natural history museums, because previous researches keep insisting that the nature of science would be more efficiently achieved in an informal educational setting rather than in classrooms.

Numerical simulation of concrete slab-on-steel girder bridges with frictional contact

  • Lin, Jian Jun;Fafard, Mario;Beaulieu, Denis
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.257-276
    • /
    • 1996
  • In North America, a large number of concrete old slab-on-steel girder bridges, classified noncomposite, were built without any mechanic connections. The stablizing effect due to slab/girder interface contact and friction on the steel girders was totally neglected in practice. Experimental results indicate that this effect can lead to a significant underestimation of the load-carrying capacity of these bridges. In this paper, the two major components-concrete slab and steel girders, are treat as two deformable bodies in contact. A finite element procedure with considering the effect of friction and contact for the analysis of concrete slab-on-steel girder bridges is presented. The interface friction phenomenon and finite element formulation are described using an updated configuration under large deformations to account for the influence of any possible kinematic motions on the interface boundary conditions. The constitutive model for frictional contact are considered as slip work-dependent to account for the irreversible nature of friction forces and degradation of interface shear resistance. The proposed procedure is further validated by experimental bridge models.

An analytical-numerical procedure for cracking and time-dependent effects in continuous composite beams under service load

  • Chaudhary, Sandeep;Pendharkar, Umesh;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.219-240
    • /
    • 2007
  • An analytical-numerical procedure has been presented in this paper to take into account the nonlinear effects of concrete cracking and time-dependent effects of creep and shrinkage in the concrete portion of the continuous composite beams under service load. The procedure is analytical at the element level and numerical at the structural level. The cracked span length beam element consisting of uncracked zone in middle and cracked zones near the ends has been proposed to reduce the computational effort. The progressive nature of cracking of concrete has been taken into account by division of the time into a number of time intervals. Closed form expressions for stiffness matrix, load vector, crack lengths and mid-span deflection of the beam element have been presented in order to reduce the computational effort and bookkeeping. The procedure has been validated by comparison with the experimental and analytical results reported elsewhere and with FEM. The procedure can be readily extended for the analysis of composite building frames where saving in computational effort would be very considerable.

Fiber reinforced concrete L-beams under combined loading

  • Ibraheem, Omer Farouk;Abu Bakar, B.H.;Johari, I.
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The addition of steel fibers in concrete mixture is recognized as a non-conventional mass reinforcement scheme that improves the torsional, flexural, and shear behavior of structural members. However, the analysis of fiber reinforced concrete beams under combined torsion, bending, and shear is limited because of the complicated nature of the problem. Therefore, nonlinear 3D finite element analysis was conducted using the "ANSYS CivilFEM" program to investigate the behavior of fiber reinforced concrete L-beams. These beams were tested at different reinforcement schemes and loading conditions. The reinforcement case parameters were set as follows: reinforced with longitudinal reinforcement only and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions, namely, torsion-to-shear ratio (T/V) = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). Eight intermediate L-beams were constructed and tested in a laboratory under combined torsion, bending, and shear to validate the finite element model. Comparisons with the experimental data reveal that the program can accurately predict the behavior of L-beams under different reinforcement cases and combined loading ratios. The ANSYS model accurately predicted the loads and deformations for various types of reinforcements in L-beams and captured the concrete strains of these beams.

A review on modelling and monitoring of railway ballast

  • Ngamkhanong, Chayut;Kaewunruen, Sakdirat;Baniotopoulos, Charalampos
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.195-220
    • /
    • 2017
  • Nowadays, railway system plays a significant role in transportation, conveying cargo, passengers, minerals, grains, and so forth. Railway ballasted track is a conventional railway track as can be seen all over the world. Ballast, located underneath the sleepers, is the most important elements on ballasted track, which has many functions and requires routine maintenance. Ballast needs to be maintained frequently to prevent rail buckling, settlement, misalignment so that ballast has to be modelled accurately. Continuum model was introduced to model granular material and was extended in ballast. However, ballast is a heterogeneous material with highly nonlinear behaviour. Hence, ballast could not be modelled accurately in continuum model due to the discontinuities nature and material degradation of ballast. Discrete element modelling (DEM) is proposed as an alternative approach that provides insight into constitutive model, realistic particle, and contact algorithm between each particle. DEM has been studied in many recent decades. However, there are limitations due to the high computational time and memory consumption, which cause the lack of using in high range. This paper presents a review of recent ballast modelling with benefits and drawbacks. Ballast particles are illustrated either circular, circular crump, spherical, spherical crump, super-quadric, polygonal and polyhedral. Moreover, the gaps and limitations of previous studies are also summarized. The outcome of this study will help the understanding into different ballast modelling and particle. The insight information can be used to improve ballast modelling and monitoring for condition-based track maintenance.