• Title/Summary/Keyword: Natural rocks

Search Result 314, Processing Time 0.026 seconds

Petrological Study and Provenance Estimation on the Stone Materials used in the Woldae of Gwanghwamun, Korea (광화문 월대 부재에 대한 암석학적 연구 및 석재공급지 추정)

  • Park, Sung Chul;Park, Sang Gu;Kim, Sung Tae;Kim, Jae Hwan;Jwa, Yong-Joo
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.46-55
    • /
    • 2019
  • In this study, we investigated the stone materials used in the Woldae of Kwanghwamun gate to estimate their provenances. The Woldae was partly reconstructed in 2010 using red-colored original stone and greyish new stone. We carried out geological survey in Mt. Bukhan (Bukhansan) and Mt. Surak (Suraksan) to estimate the source of stone, where red-colored granitic rocks are widely distributed. Though the petrographical features of the granitic rocks from the surveyed area are quite similar, there exists a slight variation of magnetic susceptibility and color index of the rocks: the granitic rocks from Mt. Surak have higher value of magnetic susceptibility and clearer reddish feature. A series of evidence, such as historical records, stone cutting traces and petrographical features, for the source of stone materials used in the Woldae tells that Mt. Surak would have been the provenance for the stone materials used in the Woldae. We also conducted a nondestructive test to examine the physical property of the rocks. The original stone shows low compressive strength (147 MPa) due to the weathering, whereas the rock in Mt. Surak has higher compressive strength (244 MPa) capable of being used as building materials. If there were any difficulties to use the granitic rocks in Mt. Surak, some granitic rocks that have similar petrological characteristics, such as Changsu stone and Yeongjung stone from the Pocheon area, could be used as building material instead.

국립공원 월악산 지역의 지형관광자원에 대한 연구

  • 김종은
    • Journal of Applied Tourism Food and Beverage Management and Research
    • /
    • v.13 no.2
    • /
    • pp.207-221
    • /
    • 2002
  • Wolaksan is a national park which has beautiful scenery with exposed rocks. The mountain is 1097 meters high and has 3 tops which are Jungang(the center), Arae(the lower part), Jjokduri. The highest point of the vertical cliff is 150m from the earth and the total circumferences of three tops is about 4km. These tops are easy to break by grains because they are from sedimentary rocks. Wolaksan is a bad mountain because the area is a Mosikjuk rocky area. However, the area around Wolaksan is thicky wooded and has many achievements and it makes good scenery. From top to southeastern, there are vertical cliff, The tops are originally from one but these are divided by partial weathering corrosion. The slide of path to Wolaksan is about 70。. The lower part of the mountain from Shinroksa to top has a gentle slope but there are a steep slope from the middle. Especially, the area has many rocks. The rocks of Wolaksan are almost granitic-gneiss or metamorphic rocks so it often fall down. Because of these fallen rocks, its valleys have great landscapes. The size of rock is less than 60cm. The landscapes of valleys such as Songgye, Dukju, Yonghwa are the main natural tourism resources.

  • PDF

Petrographic Study(ASTM C 295) on the KEDO Concrete Aggregates (콘크리트용 KEDO 골재의 암석기재시험 (ASTM C295))

  • Jeong, Ji-Gon;Kim, Kyung-Su;Lee, Chol-Woo
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.589-599
    • /
    • 2007
  • For the preliminary judgement on the chemical stability of concrete aggregates mixed with cement paste, ASTM C 295 method can be applied prior to the long-term chemical test methods. By using this standard test method, the petrographic study on the appropriateness of natural KEDO aggregates for concrete was carried out. With the natural gravel and sand aggregates, the polarized microscope, stereoscopic microscope, and X-ray diffractometer were used for examination. The result shows the 23% of gravel aggregates and 5.1% of sand aggregates are chemically unstable. To select the favorable KEDO concrete aggregates, it is required to exclude the highly metamorphosed rocks, acidic volcanic rocks, highly foliated rocks, and expansive rocks identified from mortar-bar test. Further chemical test and mortar-bar test method integrated with this study is recommended for the suitability assessment of natural KEDO concrete aggregates.

A Study on the Effect of Grain Content and Size on Mechanical Properties of Artificial Sedimentary Rocks (인공 퇴적암의 모래입자 크기와 함량이 역학적 성질에 미치는 영향에 관한 연구)

  • Byun, Hoon;Fereshtenejad, Sayedlireza;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.156-169
    • /
    • 2018
  • The relationship between the mechanical and textural properties of sedimentary rocks has been studied for decades. However, inconsistencies in the results have arisen from both the inhomogeneity of natural rocks and the difficulties encountered in controlling just one textural factor of interest in each experiment. This work produced artificial sedimentary rocks to enable control of every independent parameter at all times. Their homogeneity lowered the deviation of the results, and thus they produced clearer correlations than for natural rocks. The samples were made by mixing bassanite powder with water and silica sand, which produced rocks consisting of sand and gypsum cement. The effect of grain content and size on mechanical properties such as uniaxial compressive strength, Young's modulus, and seismic velocity was estimated. Increasing grain content lowered the compressive strength but raised Young's modulus and seismic velocity. Overall, grain size did not linearly affect the mechanical properties of the samples, but affected them in some way. In future, these results can be compared and integrated with similar experiments using different cement or grain types. This should allow comparison of the effects of the rock constituents themselves and their interactions, with applicability to all kinds of sedimentary rocks.

Simulation study on the mechanical properties and failure characteristics of rocks with double holes and fractures

  • Pan, Haiyang;Jiang, Ning;Gao, Zhiyou;Liang, Xiao;Yin, Dawei
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.93-105
    • /
    • 2022
  • With the exploitation of natural resources in China, underground resource extraction and underground space development, as well as other engineering activities are increasing, resulting in the creation of many defective rocks. In this paper, uniaxial compression tests were performed on rocks with double holes and fractures at different angles using particle flow code (PFC2D) numerical simulations and laboratory experiments. The failure behavior and mechanical properties of rock samples with holes and fractures at different angles were analyzed. The failure modes of rock with defects at different angles were identified. The fracture propagation and stress evolution characteristics of rock with fractures at different angles were determined. The results reveal that compared to intact rocks, the peak stress, elastic modulus, peak strain, initiation stress, and damage stress of fractured rocks with different fracture angles around holes are lower. As the fracture angle increases, the gap in mechanical properties between the defective rock and the intact rock gradually decreased. In the force chain diagram, the compressive stress concentration range of the combined defect of cracks and holes starts to decrease, and the model is gradually destroyed as the tensile stress range gradually increases. When the peak stress is reached, the acoustic emission energy is highest and the rock undergoes brittle damage. Through a comparative study using laboratory tests, the results of laboratory real rocks and numerical simulation experiments were verified and the macroscopic failure characteristics of the real and simulated rocks were determined to be similar. This study can help us correctly understand the mechanical properties of rocks with defects and provide theoretical guidance for practical rock engineering.

Identification of Alkali Reactivity of Natural Aggregates by Application of a Rapid Method (촉진시험법을 이용한 하천골재의 알칼리 반응성 판정)

  • Yang, Dong-Yoon;Lee, Chang-Bum
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.175-183
    • /
    • 1997
  • The concrete structure can be easily damaged due to alkali-aggregates reaction. There are several methods to identify alkali reactivity of aggregates. The most reliable method is mortar-bar test, but it takes 3 to 12 months for whole test. The authors applied "rapid method" which takes only 7 days for this test. The result of this rapid method follows; expansion ratio of mortar bar for natural aggregates taken at the Youngsan River ranges from 0.197 to 0.489%, but that from Changseong Lake has low expansion ratio of 0.147%, which is below the limit of allowance, 0.168%. Those from the Seomjin River range from 0.173 to 0.22%, and those from the Keum River range from 0.078% to 0.111%. In the case of higher expansion ratio than 0.168%, aggregates must be used with cement containing low alkali content or adding material consuming the alkali content of cement, for example, fly ash and silica fume, etc.. Most of natural aggregates in Cheolla area have no problem in physical properties, particularly the abrasion ratio is below 40%, the limit of allowance. The natural aggregate from Cheolla area consists mostly of gneiss, granite and volcanic rocks. The major alkali reactive materials are quartz mineral with undulatory extinction in gneiss and granite, and amorphous silica in volcanic rocks. Even if a certain aggregate consists of the same kind of rocks and has similar rock composition each other, content of alkali reactivity material can be various, because rock formation is locally different according to temperature and pressure. Therefore every rock type must be physically and chemically identified before using for aggregates.

  • PDF

The Geomorphological Features of Dongcheon-gugok in Korea (우리나라 동천구곡의 지형경관)

  • KEE, Keun-Doh
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.123-134
    • /
    • 2012
  • This work is to describe the geomorphological landscapes of of Dongcheon-gugok in Korea, and attempts to develop a basic data for traditional natural heritage. Dongcheon-gugok is a union of natural lanscape and human mind-activity. Therefore the study of natural landscape, which consists of geomorphological landscapes, provides a basic data for the use and conservation of traditional natural heritage. Dongcheon-gugok in Korea is almost distributed in the valley of mountainous areas of Taeback and Soback Mountain Ranges. The bedrocks of the areas of Dongcheon-gugok are almost granitic rocks and sedimentary rocks. The landscapes of Dongcheon-gugok is characterized by narrow meandering valley, so Gugok means nine-bended river. The elements of the geomorphological features is a broad flat rock with sheeting joints, joint-block seperated large blocks or tor, steep slope and rocky cliffs, pool, ripple, large or small scale waterfall, pot-hole, etc.

Petrographic Analysis for the Alkali-aggregate Reactivity (알칼리 골재의 반응성에 관한 광물학적 분석)

  • 김해인;이장화;심재황;임명혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.1-4
    • /
    • 1989
  • Recently, as the natural aggregates are exhausted, using the crashed stones bring the possibility of the alkali-aggregate reactivity. In this study, the samples are collected from the stony moutains chosen by using a geoligical survey map and analyzed in terms of the amount and the shape of the reaction minerals by a polarization microscope and X-ray diffraction which beling to the petrographic examination of aggregates for concrete. From this study, most samples of the sedimentary rocks and the granitte of the ignious rocks show the possibility of the alkali-aggregate reactivity.

  • PDF

Review on Methods of Hydro-Mechanical Coupled Modeling for Long-term Evolution of the Natural Barriers

  • Chae-Soon Choi;Yong-Ki Lee;Sehyeok Park;Kyung-Woo Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.429-453
    • /
    • 2022
  • Numerical modeling and scenario composition are needed to characterize the geological environment of the disposal site and analyze the long-term evolution of natural barriers. In this study, processes and features of the hydro-mechanical behavior of natural barriers were categorized and represented using the interrelation matrix proposed by SKB and Posiva. A hydro-mechanical coupled model was evaluated for analyzing stress field changes and fracture zone re-activation. The processes corresponding to long-term evolution and the hydro-mechanical mechanisms that may accompany critical processes were identified. Consequently, practical numerical methods could be considered for these geological engineering issues. A case study using a numerical method for the stability analysis of an underground disposal system was performed. Critical stress distribution regime problems were analyzed numerically by considering the strata's movement. Another case focused on the equivalent continuum domain composition under the upscaling process in fractured rocks. Numerical methods and case studies were reviewed, confirming that an appropriate and optimized modeling technique is essential for studying the stress state and geological history of the Korean Peninsula. Considering the environments of potential disposal sites in Korea, selecting the optimal application method that effectively simulates fractured rocks should be prioritized.

A Current Status of Natural Analogues Programs in Nations Considering High-Level Radioactive Waste Disposal

  • HunSuk Im;Dawoon Jeong;Min-Hoon Baik;Ji-Hun Ryu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.65-93
    • /
    • 2023
  • Several countries have been operating radioactive waste disposal (RWD) programs to construct their own repositories and have used natural analogues (NA) studies directly or indirectly to ensure the reliability of the long-term safety of deep geological disposal (DGD) systems. A DGD system in Korea has been under development, and for this purpose a generic NA study is necessary. The Korea Atomic Energy Research Institute has just launched the first national NA R&D program in Korea to identify the role of NA studies and to support the safety case in the RWD program. In this article, we review some cases of NA studies carried out in advanced countries considering crystalline rocks as candidate host rocks for high-level radioactive waste disposal. We examine the differences among these case studies and their roles in reflecting each country's disposal repository design. The legal basis and roadmap for NA studies in each country are also described. However because the results of this analysis depend upon different environmental conditions, they can be only used as important data for establishing various research strategies to strengthen the NA study environment for domestic disposal system research in Korea.