DOI QR코드

DOI QR Code

A Study on the Effect of Grain Content and Size on Mechanical Properties of Artificial Sedimentary Rocks

인공 퇴적암의 모래입자 크기와 함량이 역학적 성질에 미치는 영향에 관한 연구

  • Byun, Hoon (Department of Energy Systems Engineering, Seoul National University) ;
  • Fereshtenejad, Sayedlireza (Department of Energy Systems Engineering, Seoul National University) ;
  • Song, Jae-Joon (Department of Energy Systems Engineering, Seoul National University)
  • 변훈 (서울대학교 공과대학 에너지시스템공학부) ;
  • ;
  • 송재준 (서울대학교 공과대학 에너지시스템공학부)
  • Received : 2018.02.21
  • Accepted : 2018.03.20
  • Published : 2018.04.30

Abstract

The relationship between the mechanical and textural properties of sedimentary rocks has been studied for decades. However, inconsistencies in the results have arisen from both the inhomogeneity of natural rocks and the difficulties encountered in controlling just one textural factor of interest in each experiment. This work produced artificial sedimentary rocks to enable control of every independent parameter at all times. Their homogeneity lowered the deviation of the results, and thus they produced clearer correlations than for natural rocks. The samples were made by mixing bassanite powder with water and silica sand, which produced rocks consisting of sand and gypsum cement. The effect of grain content and size on mechanical properties such as uniaxial compressive strength, Young's modulus, and seismic velocity was estimated. Increasing grain content lowered the compressive strength but raised Young's modulus and seismic velocity. Overall, grain size did not linearly affect the mechanical properties of the samples, but affected them in some way. In future, these results can be compared and integrated with similar experiments using different cement or grain types. This should allow comparison of the effects of the rock constituents themselves and their interactions, with applicability to all kinds of sedimentary rocks.

퇴적암의 역학적 성질과 구조적 성질간의 관계는 오랫동안 연구되었다. 그러나 암석의 불균질성과 실험에서 여러 구조적 성질 중 오직 하나의 영향인자만을 변화시키는 것의 어려움 때문에 실험 결과들간의 불일치가 관찰되어왔다. 본 연구에서는 인공 퇴적암을 사용해 역학적 성질에 영항을 미치는 모든 요인을 통제할 수 있도록 하였으며, 실제 암석에 비해 균질성을 높였다. 이로 인하여 실험 결과들의 편차가 낮아졌으며, 실제 암석에 대한 실험보다 더욱 명료한 상관관계가 밝혀졌다. 실험에 사용된 시료는 반수석고 파우더를 물과 규사와 혼합하여 만들었으며, 완성된 형태의 인공 퇴적암은 입자 알갱이로서의 모래와, 교결물질로서의 석고로 이루어졌다. 이 인공 퇴적암으로 모래입자의 비율과 크기가 일축압축강도, 탄성계수, 그리고 탄성파속도에 미치는 영향을 분석하였다. 모래입자의 비율을 높일수록 일축압축강도는 줄어들었으며, 탄성계수와 탄성파속도는 증가하였다. 전반적으로 모래입자의 크기는 암석의 역학적 성질과 비선형적인 관계를 보였다. 여기에서의 연구 결과는 추후에 다른 종류의 교결물질이나 입자 알갱이를 사용한 연구와 통합될 수 있다. 이로부터 입자 알갱이나 교결물질의 종류, 혹은 교결물질과 입자 알갱이 간의 상호작용 등이 암석의 역학적 성질에 끼치는 영향에 대한 고찰이 가능할 것이며 그 결과는 다양한 종류의 퇴적암에 적용 가능할 것이다.

Keywords

References

  1. ASTM D2487-11, 2011, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
  2. ASTM D3282-15, 2015, Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes.
  3. Bell, F and Culshaw, M., 1993, A survey of the geotechnical properties of some relatively weak Triassic sandstones, Eng Geol Spec Publ., 139p.
  4. Bell, F., 1978, The physical and mechanical properties of the Fell Sandstones, Northumberland, England, Eng Geol., Vol. 12, pp. 1-29. https://doi.org/10.1016/0013-7952(78)90002-9
  5. Bell, F.G. and Culshaw, M.G., 1998, Petrographic and engineering properties of sandstones from the Sneinton formation, Nottinghamshire, England, Q J Eng Geol., Vol. 31, No. 1, pp. 5-19. https://doi.org/10.1144/GSL.QJEG.1998.031.P1.02
  6. Bruno, M.S. and Nelson, R.B., 1991, Microstructural analysis of the inelastic behavior of sedimentary-rock, Mech Mater., Vol. 12, No. 2, pp. 95-118. https://doi.org/10.1016/0167-6636(91)90057-7
  7. Cetin, A. and Carrasquillo, R.L., 1998, High-performance concrete: Influence of coarse aggregates on mechanical properties, ACI Mater J., Vol. 95, No. 3, pp. 252-261.
  8. Clough, G.W., Sitar, N., Bachus, R.C. and Rad, N.S., 1981, Cemented sands under static loading, J Geotech Eng., Vol. 107, No, 6, pp. 799-817.
  9. David, C., Menendez, B. and Bernabe, Y., 1998, The mechanical behaviour of synthetic sandstone with varying brittle cement content, Int J Rock Mech Min Sci., Vol. 35 No. 6, pp. 759-770. https://doi.org/10.1016/S0148-9062(98)00003-5
  10. Dobereiner, L. and Defreitas, M.H., 1986, Geotechnical properties of weak sandstones, Geotechnique., Vol. 36 No. 1, pp. 79-94. https://doi.org/10.1680/geot.1986.36.1.79
  11. Ersoy, A. and Waller, M.D., 1995, Textural characterization of rocks, Eng Geol., Vol. 39 No. 3-4, pp. 123-136. https://doi.org/10.1016/0013-7952(95)00005-Z
  12. Fahy, M. and Guccione, M., 1979, Estimating strength of sandstone using petrographic thin-section data, Bull Assoc Eng Geol., Vol. 16, No. 4, pp. 467-485.
  13. Fattahpour, V., Baudet, B.A., Moosavi, M., Mehranpour, M. and Ashkezari, A., 2014 Effect of grain characteristics and cement content on the unconfined compressive strength of artificial sandstones, Int J Rock Mech Min Sci., Vol. 72, pp. 109-116.
  14. Goodman, R.E., 1993, Engineering Geology-Rock in Engineering Construction, Wiley, New York, 86p.
  15. Gunsallus, K. and Kulhawy, F., 1984, A comparative evaluation of rock strength measures, Int J Rock Mech Min Sci & Geomech Abstr., Vol. 21 No. 5, pp. 233-248. https://doi.org/10.1016/0148-9062(84)92680-9
  16. Gupta, V. and Sharma, R., 2012, Relationship between textural, petrophysical and mechanical properties of quartzites: A case study from northwestern Himalaya, Eng Geol., Vol. 135, pp. 1-9.
  17. Howarth, D.F. and Rowlands, J.C., 1987, Quantitative assessment of rock texture and correlation with drillability and strength properties, Rock Mech Rock Eng., Vol. 20, No. 1, pp. 57-85. https://doi.org/10.1007/BF01019511
  18. Johnston, C.D., 1970, Strength and deformation of concrete in uniaxial tension and compression, Mag Concrete Res., Vol. 22, No. 70, pp. 5-16. https://doi.org/10.1680/macr.1970.22.70.5
  19. Krumbein, W.C. and Pettijohn, F.J., 1938, Manual of Sedimentary Petrography, Appleton-Century-Crofts Inc., New York, pp. 129-133
  20. Meddah, M.S., Zitouni, S. and Belaabes, S., Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete, Constr Build Mater., Vol. 24, No. 4, pp. 505-512. https://doi.org/10.1016/j.conbuildmat.2009.10.009
  21. Olsson, W.A., 1974, Grain-size dependence of yield stress in marble, J Geophys Res., Vol. 79 No. 32, pp. 4859-4862. https://doi.org/10.1029/JB079i032p04859
  22. Onodera, T., and Asoka Kumara, H., 1980, Relation between texture and mechanical properties of crystalline rock,. Bull Int Assoc Eng Geol., Vol. 22, pp. 173-177.
  23. Palchik, V., 1999, Influence of porosity and elastic modulus on uniaxial compressive strength in soft brittle porous sandstones, Rock Mech Rock Eng., Vol. 32, No. 4, pp. 303-309. https://doi.org/10.1007/s006030050050
  24. Rosenthal, A., 1951, The history of calculus, Am Math Mon., Vol. 58 No. 2, pp. 75-86. https://doi.org/10.1080/00029890.1951.11999628
  25. Scrivener, K.L., Crumbie, A.K. and Laugesen, P., 2004, The interfacial transition zone (ITZ) between cement paste and aggregate in concrete, Interface Sci., Vol. 12 No. 4, pp. 411-421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c
  26. Shakoor, A. and Bonelli, R.E., 1991, Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones, Bull Assoc Eng Geol., Vol. 28 No. 1, pp. 55-71.
  27. Soil Survey Staff, 1993, Soil Survey Manual, Soil Conservation Service: U.S. Department of Agriculture.
  28. Ward, M.A., 1964, The testing of concrete materials by precisely controlled uni-axial tension, University of London.
  29. Wu, K.R., Yan, A., Yao, W. and Zhang, D., 2002, The influence of RPCA on the strength and fracture toughness of HPC, Cement Concrete Res., Vol. 32 No. 3, pp. 351-355. https://doi.org/10.1016/S0008-8846(01)00681-0