• Title/Summary/Keyword: Natural purification

Search Result 511, Processing Time 0.024 seconds

Preparation of PEGDA/PETEDA Dendrimer Membranes for $CO_2$ Separation ($CO_2$ 분리를 위한 PEGDA/PETEDA dendrimer 막의 제조)

  • Han, Na;Lee, Hyunkyung
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2013
  • PEGDA/PETEDA dendrimer composite membranes was prepared by UV photopolymerizing of poly ethylene glycol diacrylate (PEGDA) containing 5~15 wt% pentaerythrityl tetraethylenediamine (PETEDA) dendrimer. The prepared composite membrane was characterized by FT-IR, $^1H$-NMR and DSC. The glass transition temperature ($T_g$) of PEGDA/PETEDA dendrimer composite decreased with the increment of PETEDA dendrimer content. The $CO_2$ separation properties over $CH_4$ were investigated by changing the PETEDA dendrimer content and pressure. The composite membrane containing 10 wt% PETEDA dendrimer exhibited on excellent $CO_2/CH_4$ ideal selectivity of 31.8 and a $CO_2$ permeability of 162.2 barrer.

Irreversible Thermoinactivation Mechanisms of Subtilisin Carlsberg

  • Dong Uk Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.600-604
    • /
    • 1989
  • In order to find the rational methods for improving the thermal stability of subtilisin Carlsberg, the mechanisms of irreversible thermoinactivation of the enzyme were studied at $90^{\circ}C.$ At pH 4, the main process was hydrolysis of peptide bond. This process followed first order kinetics, yielding a rate constant of $1.26\;{\times}\;10^{-1}h^{-1}$. Hydrolysis of peptide bond of PMS-subtilisin occurred at various sites, which produced new distinct fragments of molecular weights of 27.2 KD, 25.9 KD, 25.0 KD, 22.3 KD, 19.0 KD, 17.6 KD, 16.5 KD, 15.7 KD, 15.0 KD, 13.7 KD, and 12.7 KD. Most of the new fragments originated from the acidic hydrolysis at the C-side of aspartic acid residues. However 25.0 KD, 15.7 KD, and 13.7 KD which could not be removed in purification steps stemmed from the autolytic cleavage of subtilisin. The minor process at pH 4 was deamidation at asparagine and/or glutamine residues and some extend of aggregation was also observed. However, the aggregation was main process at pH 7 with a first order kinetic constant of $16 h^{-1}.$ At pH 9, the main process seemed to be combination of deamidation and cleavage of peptide bond.

Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8

  • Li, Wen;Samarasinghe, S.A.S.C.;Bae, Tae-Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.156-163
    • /
    • 2018
  • High-performance mixed-matrix membranes that comprise both zeolitic imidazolate framework-8 (ZIF-8) and graphene oxide (GO) were synthesized with a solution casting technique to realize excellent $CO_2/CH_4$ separation. The incorporation of ZIF-8 nanocrystals alone in ODPA-TMPDA polyimide can be used to significantly enhance $CO_2$ permeability compared with that of pure ODPA-TMPDA. Meanwhile, the addition of a GO nanostack alone in ODPA-TMPDA contributes to improved $CO_2/CH_4$ selectivity. Hence, a composite membrane that contains both fillers displays significant enhancements in $CO_2$ permeability (up to 60%) and $CO_2/CH_4$ selectivity (up to 28%) compared with those of pure polymeric membrane. Furthermore, in contrast to the ZIF-8 mixed-matrix membrane, which showed decreased mechanical stability, it was found that the incorporation of GO could improve the mechanical strength of mixed-matrix membranes. Overall, the synergistic effects of the use of both fillers together are successfully demonstrated in this paper. Such significant improvements in the mixed-matrix membrane's $CO_2/CH_4$ separation performance and mechanical strength suggest a feasible and effective approach for potential biogas upgrading and natural gas purification.

Enhanced Arsenic(V) Removal from Aqueous Solution by a Novel Magnetic Biochar Derived from Dairy Cattle Manure

  • Akyurek, Zuhal;Celebi, Hande;Cakal, Gaye O.;Turgut, Sevnur
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.423-432
    • /
    • 2022
  • Magnetic biochar produced from pyrolysis of dairy cattle manure was used to develop an effective sorbent for arsenic purification from aqueous solution. Biomass and magnetized biomass were pyrolyzed in a tube furnace with 10 ℃/min heating rate at 450 ℃ under nitrogen flow of 100 cm3/min for 2 h. Biochars were characterized by SEM-EDX, BET, XDR, FTIR, TGA, zeta potential analysis. The resultant biochar and magnetic biochar were opposed to 50-100-500 ppm As(V) laden aqueous solution. Adsorption experiments were performed by using ASTM 4646-03 batch method. The effects of concentration, pH, temperature and stirring rate on adsorption were evaluated. As(V) was successfully removed from aqueous solution by magnetic biochar due to its highly porous structure, high aromaticity and polarity. The results suggest dairy cattle manure pyrolysis is a promising route for managing animal manure and producing a cost effective biosorbent for efficient immobilization of arsenic in aqueous solutions.

Cera Flava Improves Behavioral and Dopaminergic Neuronal Activities in a Mouse Model of Parkinson's Disease (황납추출물이 도파민세포 보호효과 및 파킨슨병 행동장애에 미치는 영향)

  • Lim, Hye-Sun;Moon, Byeong Cheol;Park, Gunhyuk
    • Journal of Environmental Science International
    • /
    • v.31 no.5
    • /
    • pp.423-429
    • /
    • 2022
  • Parkinson's Disease (PD) is a chronic neurodegenerative disorder caused by the progressive loss of dopaminergic neurons, leading to decreased dopamine levels in the midbrain. Although the specific etiology of PD is not yet known, oxidative stress, inflammation, and subsequent apoptosis have been proposed to be closely related to PD pathophysiology. Cera Flava (CF) is a natural extract obtained from beehives and is isolated through the heating, compression, filtration, and purification of beehives. CF has been used in traditional medicines for its various clinical and pharmacological effects. However, its effects on neurodegenerative diseases are unknown. Therefore, we investigated the effects of CF against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice and explored the underlying mechanism of action. In MPTP-induced PC12 cells, CF protected NADH dehydrogenase activity and inhibited lactate dehydrogenase. In the mouse model, CF promoted recovery from movement impairments, prevented dopamine depletion, and protected against MPTP-induced dopaminergic neuronal degradation. Moreover, CF downregulated glial and microglial activation. Taken together, our results suggest that CF improves behavioral impairments and protects against dopamine depletion in MPTP-induced toxicity by inhibiting glial and microglial activation.

A Study on the New Method for Water-Purification in a Semi-enclosed Bay (폐쇄성해역에 있어서의 새로운 수질개선책에 관한 연구)

  • Gug, S.G.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.95-104
    • /
    • 1998
  • Water pollution in a semi-enclosed sea area such as a bay due to stagnancy of water has been a serious water environmental problem. Recently, some kinds of new methods to activate the tidal exchange between an inner bay and an outer sea area by control of a tidal residual current have been proposed. However, these methods have several problems, that is, I). deterioration in a natural view due to building of huge structures, II). increase of risk of navigation in case of a submerged structure, III). limition of sea area where a tidal current can be controlled and IV). difficulty in removing those structures in case of occurrence of an unexpected impact on water environment. In this paper, a new method is proposed, which can solve all the above problems, to purify water quality in a semi-enclosed bay by creation and control of a pattern of a tidal residual current. The tidal residual current is controlled by unsymmetric structures, which change the properties of resistance according to the direction of flow, arranged on the sea bottom. In this study, several numerical and hydraulic experiments of tidal current and particle-tracking for various arrangements of bottom roughness in a semi-enclosed model bay were carried out. As a result of experiments, it becomes clear that it is possible to generate a new tidal residual current and to activate a tidal exchange by only operation of bottom roughness arrangement.

  • PDF

Purification and Biological Characterization of Wild-type and Mutants of a Levan Fructotransferase from Microbacterium sp. AL-210 (Microbacterium sp. A-210이 생성하는 Levan fructotransferase의 정제 및 생물학적 특성에 관한 연구)

  • Hwang, Eun-Young;Jeong, Mi-Suk;Cha, Jae-Ho;Jang, Se-Bok
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1218-1225
    • /
    • 2009
  • Difractose anhydrides (DFAs) is studied as a sweetener for diabetics because of its structural property. DFAs have four types: DFA I, III, IV (degradation of levan) and V (degradation of inulin). Especially, DFA IV has been shown to enhance the absorption of calcium in experiments using rats. Levan fructotransferase is an enzyme for producing di-d-fructose-2,6':6,2-dianhydride (DFA IV). To identify structural characterization, we purified wild-type and mutants (D63A, D195N and N85S) of levan fructotransferase (LFTase) from Microbacterium sp. AL-210. These proteins were purified to apparent homogeneity by Ni-NTA affinity column, Q-sepharose ion exchange and gel filtration chromatography and detected by SDS-PAGE. They were also analyzed by circular dichroism (CD) measurements, JNET secondary structure prediction, activity measurements at various temperatures, and pH analysis. The optimum pH for the enzyme-catalyzed reaction was pH 7.5 and optimum temperature was observed at $55^{\circ}C$. Along with wild-type LFTase, mutants were analyzed by CD measurement, fluorescence analysis and differential scanning calorimetry (DSC). N85S showed less $\alpha$-helix and more $\beta$ strand than others. Also, N85S showed almost the same curve as wild-type in their steady-state fluorescence spectra, whereas mutant D63A and D195N showed higher intensity than wild-type. The amino acid sequence of wild-type LFTase was compared to the sequences of exo-inulinase from Aspergillus awamori, a plant fructan 1-exohydrolase from Cichorium intybus, and Thermotogo maritime (Tm) invertase and showed a high identity with Exo-inulinase from Aspergillus awamori.

Expression Properties and Skin Permeability of Human Basic Fibroblast Growth Factor with or without PTD Fused to N- or C-terminus in Escherichia coli (대장균 발현시스템에서 단백질 전달 도메인 PTD가 인간 섬유아세포 성장인자(FGF2)의 N- 또는 C-말단에 결합 되었을 때 미치는 재조합 단백질 복합체의 발현 특성과 피부 투과능력)

  • Park, In-Sun;Choe, Chung-Hyeon;Kwon, Bo-Ra;Choi, Young-Ji;Kwon, Tae-Ho;Yu, Kang-Yeol;Lee, Juhyung;Choo, Young-Moo
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.275-283
    • /
    • 2018
  • Human fibroblast growth factor (FGF) has the potential to be a commercially important therapeutic or cosmeceutical agent due to its ability to generate tissue and heal wounds. Granting permeability into skin tissues increases the therapeutic effects of FGF. Thus, several researchers have attempted the fusion of FGF conjugates with protein transduction domains (PTDs) to investigate the transduction ability and therapeutic effects of FGF. Less is known, however, about whether the location of PTD fused to the N- or C-terminus of FGF proteins has a significant impact on the folding and stability in Escherichia coli, and eventually, on transduction. Here, we report cloning of human basic fibroblast growth factor (FGF2) as a control and FGF2 with PTD fused to the N- or C-terminal ends of FGF proteins by an overlap extension PCR. We performed expression, verified expression properties of recombinant FGF2 without or with PTD fused to the N-terminus and the C-terminus, and investigated transduction ability into tissue by treating the dorsal skin of mice subjects. As a result, FGF2 and FGF2-PTD (fused to C-terminus) fusion protein were expressed as soluble forms suitable for straight-forward purification, unlike insoluble PTD-FGF2 (fused to N-terminus), but only FGF2-PTD fusion protein could transduce into the dorsal skin tissue of the mice subjects. Our results suggest that FGF2 with PTD fused to the C-terminus is more efficient than other options in terms of expression, purification, and delivery into skin tissue, as it does not require labor-intensive, costly, and time-consuming methods.

Purification of Antimicrobial Compounds and Antimicrobial Effects of Schima wallichii subsp. liukiuensis against Candida sp. (Schima wallichii subsp. liukiuensis의 Candida종에 대한 항균효과 및 항균물질의 분리정제)

  • Choi, Mynug-Suk;Shin, Kuem;Yang, Jae-Kyung;Ahan, Jin-Kwon;Kwon, Oh-Woong;Lee, Yi-Young
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.269-273
    • /
    • 2001
  • To develop natural antimicrobial substances from Theaceae, Schima wallichii subsp. liukiuensis was selected from 218 woody plants, and antimicrobial compounds against bacteria, fungi, and yeast were isolated. The antimicrobial activity of ethanol extracts proved higher than those of other organic solvents. The antimicrobial activity of S. liukiuensis extract showed no differences in sesonal variation, but, that of plant part was high in bark at autumn. An antimicrobial substance was isolated from the extract of Schima using column chromatography packed with silica gel and sephadex LH-20, and then a purified antimicrobial substance (Compound I) was obtained using HPLC analysis. The Compound I in the analysis of UV, IR, and GC-MS presumed a triterpene or steroidal saponin, ${\alpha}$-sitisterol as aglycon combined three sugars. The minimal inhibitory concentration (MIC) of the Compound I against a bacteria, fungi, and yeast were 1.25 g/L, 5.0 g/L, and 0.040 g/L, respectively. This is much lower than the MIC of hinokitiol, an natural antimicrobial compound used commercially, which suggests that Compound I could be developed as a natural preservative and pharmaceuticals.

  • PDF

Purification and Characterization of Myrosinase in Dolsan Leaf Mustard(Brassica juncea) and Changes in Myrosinase Activity during Fermentation of Leaf Mustard Kimchi (돌산갓의 Myrosinase 분리 정제 및 갓김치 숙성 중 Myrosinase 활성도의 변화)

  • Park, Jeong-Ro;Park, Seok-Kyu;Cho, Young-Sook;Chun, Soon-Sil
    • Journal of the Korean Society of Food Culture
    • /
    • v.9 no.2
    • /
    • pp.137-142
    • /
    • 1994
  • Myrosinase in leaf mustard was purified and characterized to furnish a grounding information for utilizing the pungent taste and the potential antimicrobial capability of Dolsan leaf mustard to enhance the taste and storage life of kimchi. When myrosinase was purified from leaf mustard through a series of DEAE Sephadex, chromatofocusing and Con A Sepharose column chromatography, specific activity of the enzyme increased 7107-fold compared with that of crude enzyme preparation, and 18.8% yield was obtained. The purified myrosinase showed the optimum pH of 5.9, isoelectric point of 4.6, molecular weight of 129 kD, Km of 0.206 mM, and Vmax of $2.039\;{\mu}M{\cdot}min^{-1}{\cdot}mg\;protein^{-1}$, respectively. The optimum concentration of L-ascorbic for the maximum activity of the enzyme was 0.6 mM, and the enzyme activity decreased at a higher concentration of L-ascorbic acid than 0.6 mM, showing almost no enzyme activity at a L-ascorbic acid concentration of higher than 2.0 mM. Myrosinase activity in leaf mustard kimchi immediately after the kimchi was formulated was shown to be about 70 nmol/min/mg protein which decreased rapidly after 3 days of storage at $20^{\circ}C$, showing that less than half and almost none of the enzyme activity was retained in 4 and 10 days of storage, respectively.

  • PDF