Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.3.275

Expression Properties and Skin Permeability of Human Basic Fibroblast Growth Factor with or without PTD Fused to N- or C-terminus in Escherichia coli  

Park, In-Sun (Jeonju AgroBio-Materials Institute)
Choe, Chung-Hyeon (Natural Bio-Materials Inc.)
Kwon, Bo-Ra (Jeonju AgroBio-Materials Institute)
Choi, Young-Ji (Jeonju AgroBio-Materials Institute)
Kwon, Tae-Ho (Natural Bio-Materials Inc.)
Yu, Kang-Yeol (Jeonju AgroBio-Materials Institute)
Lee, Juhyung (Department of Preventive Medicine, Chonbuk National University Medical School)
Choo, Young-Moo (Jeonju AgroBio-Materials Institute)
Publication Information
Journal of Life Science / v.28, no.3, 2018 , pp. 275-283 More about this Journal
Abstract
Human fibroblast growth factor (FGF) has the potential to be a commercially important therapeutic or cosmeceutical agent due to its ability to generate tissue and heal wounds. Granting permeability into skin tissues increases the therapeutic effects of FGF. Thus, several researchers have attempted the fusion of FGF conjugates with protein transduction domains (PTDs) to investigate the transduction ability and therapeutic effects of FGF. Less is known, however, about whether the location of PTD fused to the N- or C-terminus of FGF proteins has a significant impact on the folding and stability in Escherichia coli, and eventually, on transduction. Here, we report cloning of human basic fibroblast growth factor (FGF2) as a control and FGF2 with PTD fused to the N- or C-terminal ends of FGF proteins by an overlap extension PCR. We performed expression, verified expression properties of recombinant FGF2 without or with PTD fused to the N-terminus and the C-terminus, and investigated transduction ability into tissue by treating the dorsal skin of mice subjects. As a result, FGF2 and FGF2-PTD (fused to C-terminus) fusion protein were expressed as soluble forms suitable for straight-forward purification, unlike insoluble PTD-FGF2 (fused to N-terminus), but only FGF2-PTD fusion protein could transduce into the dorsal skin tissue of the mice subjects. Our results suggest that FGF2 with PTD fused to the C-terminus is more efficient than other options in terms of expression, purification, and delivery into skin tissue, as it does not require labor-intensive, costly, and time-consuming methods.
Keywords
FGF2 conjugates; purification; solubility; transduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gasparian, M. E., Elistratov, P. A., Drize, N. I., Nifontova, I. N., Dolgikh, D. A. and Kirpichnikov, M. P. 2009. Overexpression in Escherichia coli and purification of human fibroblast growth factor (FGF-2). Biochemistry (Mosc) 74, 221-225.   DOI
2 Hagiwara, A., Nakayama, F., Motomura, K., Asada, M., Suzuki, M., Imamura, T. and Akashi, M. 2009. Comparison of expression profiles of several fibroblast growth factor receptors in the mouse Jejunum: Suggestive evidence for a differential radioprotective effect among major FGF family members and the potency of FGF1. Radiat. Res. 172, 58-65.   DOI
3 Iwane, M., Kurokawa, T., Sasada, R., Seno, M., Nakagawa, S. and Igarashi, K. 1987. Expression of cDNA encoding human basic fibroblast growth factor in E. coli. Biochem. Biophys. Res. Commun. 146, 470-477.   DOI
4 Knoerzer, W., Binder, H, P., Schneider, K., Grussc, P., McCarthyd, J. E. G. and Risaue, W. 1989. Expression of synthetic genes encoding bovine and human basic fibroblast growth factors (bFGF). Gene 75, 21-30.   DOI
5 Kuriyama, M., Nakatu, M., Nakao, M., Igarashi, K. and Kitano, K. 1992. Controlled expression of human basic fibroblast growth factor mutein CS23 in Escherichia coli under a bacteriophage T7 promoter. J. Ferment. Bioeng. 74, 67-72.
6 Kroiher, M., Raffioni, S. and Steele, R. E. 1995. Single step purification of biologically active recombinant rat basic fibroblast growth factor by immobilized metal affinity chromatography. Biochim. Biophys. Acta. 1250, 29-34.   DOI
7 Kim, H. S. 1998. Assignment1 of the human basic fibroblast growth factor gene FGF2 to chromosome 4 band q26 by radiation hybrid mapping. Cytogenet. Cell Genet. 83, 73.   DOI
8 Lemaitre, G., Laaroubi, K., Soulet, L., Barritault, D. and Miskulin, M. 1995. Production and purification of active FGF2 via recombinant fusion protein. Biochimie 77, 162-166.   DOI
9 Lindsay, M. A. 2002. Peptide-mediated cell delivery: application in protein target validation. Curr. Opin. Pharmacol. 2, 587-594.   DOI
10 Lindgren, M., Hallbrink, M., Prochiantz, A. and Langel, U. 2000. Cell-penetrating peptides. Trends Pharmacol. Sci. 21, 99-103.   DOI
11 Misawa, S. and Kumagai, I. 1999. Refolding of therapeutic protein produced in Escherichia coli as inclusion bodies. Biopolymers 51, 297-307.   DOI
12 Mirzahoseini, H., Mehraein, F., Omidinia, E. and Razavi, M. R. 2004. Differential expression of human basic fibroblast growth factor in Escherichia coli: potential role of promoter. World. J. Microbiol. Biotechnol. 20, 161-165.   DOI
13 Maclachlan, T., Narayanan, B., Gerlach, V. L., Smithson, G., Gerwien, R. W., Folkerts, O., Fey, E. G., Watkins, B., Seed, T. and Alvarez, E. 2005. Human fibroblast growth factor 20 (FGF-20; CG53135-05): a novel cytoprotectant with radioprotective potential. Int. J. Radiat. Biol. 81, 567-579.   DOI
14 Nakayama, F., Muller, K., Hagiwara, A., Ridi, R., Akashi, M. and Meineke, V. 2008. Involvement of intracellular expression of FGF12 in radiation-induced apoptosis in mast cells. J. Radiat. Res. 49, 491-501.   DOI
15 Bikfalvi, A., Klein, S., Pintucci, G. and Rifkin, D. B. 1997. Biological roles of fibroblast growth factor-2. Endocr. Rev. 18, 26-45.
16 Nakayama, F., Yasuda, T., Umeda, S., Asada, M., Imamura, T., Meineke, V. and Akashi, M. 2011. Fibroblast growth factor- 12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain. J. Biol. Chem. 286, 25823-25834.   DOI
17 Papadopoulou, L. C. and Tsiftsoglou, A. S. 2013. The potential role of cell penetrating peptides in the intracellular delivery of proteins for therapy of erythroid related disorders. Pharmaceuticals 6, 32-53.   DOI
18 Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V. T., Mal, T. K., Takayama, M. M., Xia, B., Phadtare, S., Ke, H., Acton, T., Montelione, G. T., Ikura, M. and Inouye, M. 2004. Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22, 877-882.   DOI
19 Wang, J., Hong, A., Ren, J. S., Suna, F. Y., Shia, Y. J., Liua, K., Xiea, Q. L., Daia, Y., Lia, Z. Y. and Chen, Y. 2006. Biochemical properties of C78SC96S rhFGF-2: a double point-mutated rhFGF-2 increases obviously its activity. J. Biotechnol. 121, 442-447.
20 Bowden, G. A., Paredes, A. M. and Georgiou, G. 1991. Structure and morphology of inclusion bodies in Escherichia coli. Bio/Technology 9, 725-730.
21 Carrio, M. M., Corchero, J. L. and Villaverde, A. 1998. Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol. Lett. 169, 9-15.   DOI
22 Derossi, D., Joliot, A. H., Chassaing, G. and Prochiantz, A. 1994. The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444-10450.
23 Elliott, G. and O'Hare, P. 1997. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 88, 223-233.   DOI
24 Frankel, A. D. and Pabo, C. O. 1988. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189-1193.   DOI
25 Garke, G., Deckwer, W. D. and Anspach, F. B. 2000. Preparative two-step purification of recombinant human basic fibroblast growth factor from high-cell-density cultivation of Escherichia coli. J. Chromatogr. B: Biomed. Sci. Appl. 737, 25-38.
26 Gros, E., Deshayes, S., Morris, M. C., Aldrian-Herrada, G., Depollier, J., Heitz, F. and Divita, G. 2006. A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim. Biophys. Acta. 1758, 384-393.   DOI
27 Rosano, G. L. and Ceccarelli, E. A. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 5, 172.
28 Nakayama, F., Hagiwara, A., Kimura, M., Akashi, M. and Imamura, T. 2009. Evaluation of radiation-induced hair follicle apoptosis in mice and the preventive effects of fibroblast growth factor-1. Exp. Dermatol. 18, 889-892.   DOI
29 Nakayama, F., Hagiwara, A., Umeda, S., Asada, M., Goto, M., Oki, J., Suzuki, M. and Imamura, T. 2010. Post treatment with an FGF chimeric growth factor enhances epithelial cell proliferation to improve recovery from radiation-induced intestinal damage. Int. J. Radiat. Oncol. Biol. Phys. 78, 860-867.   DOI
30 Rinas, U., Tsai, L. B., Lyons, D., Fox, G. M., Stearns, G., Fieschko, J., Fenton, D. and Bailey, J. E. 1992. Cysteine to serine substitutions in basic fibroblast growth factor: effect on inclusion body formation and proteolytic susceptibility during in vitro refolding. Nat. Biotechnol. 10, 435-440.   DOI
31 Schwarze, S. R., Ho, A., Vocero-Akbani, A. and Dowdy, S. F. 1999. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science 285, 1569-1572.   DOI
32 Schwarze, S. R., Hruska, K. A. and Dowdy, S. F. 2000. Protein transduction: Unrestricted delivery into all cells? Trends Cell Biol. 10, 290-295.
33 Sheng, Z., Chang, S. B. and Chirico, W. J. 2003. Expression and purification of a biologically active basic fibroblast growth factor fusion protein. Protein. Expr. Purif. 27, 267-271.   DOI
34 Alibolandi, M. and Mirzahoseini, H. 2011. Purification and refolding of overexpressed human basic fibroblast growth factor in Escherichia coli. Biotechnol. Res. Int. 973741, 1-6.
35 Alvarez, E., Fey, E. G., Valax, P., Yim, Z., Peterson, J. D., Mesri, M., Jeffers, M., Dindinger, M., Twomlow, N., Ghatpande, A., LaRochelle, W. J., Sonis, S. T. and Lichenstein, H. S. 2003. Preclinical characterization of CG53135 (FGF-20) in radiation and concomitant chemotherapy/ radiation- induced oral mucositis. Clin. Cancer Res. 9, 3454-3461.
36 Andrades, J. A., Santamaria, J. A., Wu, L. T., Hall, F. L., Nimni, M. E. and Becerra, J. 2001. Production of a recombinant human basic fibroblast growth factor with a collagen binding domain. Protoplasma 218, 95-103.   DOI
37 Andrades, J. A., Wu, L. T., Hall, F. L., Nimni, E. and Becerra, J. 2001. Engineering, expression, and renaturation of a collagen- targeted human bFGF fusion protein. Growth Factors 18, 261-275.   DOI
38 Taylor, G., Hoare, M., Gray, D. R. and Marston, F. A. O. 1986. Size and density of inclusion bodies. Bio/Technology 4, 553-557.
39 Song, J. A., Koo, B. K., Chong, S. H., Kwak, J., Ryu, H. B., Nguyen, M. T., Vu, T. T. T., Jeong, B., Kim, S. W. and Choe, H. 2013. Expression and purification of biologically active human FGF2 containing the b'a' domains of human PDI in Escherichia coli. Appl. Biochem. Biotechnol. 170, 67-80.   DOI
40 Sun, C., Li, Y., Taylor, S. E. and Marston, F. A. O. 2015. Halo Tag is an effective expression and solubilisation fusion partner for a range of fibroblast growth factors. PeerJ 3, e1060.   DOI
41 An, J. J., Eum, W. S., Kwon, H. S., Koh, J. S., Lee, S. Y., Baek, J. H., Cho, Y. J., Kim, D. W., Han, K. H., Park, J., Jang, S. H. and Choi, S. Y. 2013. Protective effects of skin permeable epidermal and fibroblast growth factor against ultraviolet-induced skin damage and human skin wrinkles. J. Cosmet. Dermatol. 12, 287-295.   DOI