Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.9.1218

Purification and Biological Characterization of Wild-type and Mutants of a Levan Fructotransferase from Microbacterium sp. AL-210  

Hwang, Eun-Young (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Jeong, Mi-Suk (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Cha, Jae-Ho (Department of Microbiology, College of Natural Sciences, Pusan National University)
Jang, Se-Bok (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.19, no.9, 2009 , pp. 1218-1225 More about this Journal
Abstract
Difractose anhydrides (DFAs) is studied as a sweetener for diabetics because of its structural property. DFAs have four types: DFA I, III, IV (degradation of levan) and V (degradation of inulin). Especially, DFA IV has been shown to enhance the absorption of calcium in experiments using rats. Levan fructotransferase is an enzyme for producing di-d-fructose-2,6':6,2-dianhydride (DFA IV). To identify structural characterization, we purified wild-type and mutants (D63A, D195N and N85S) of levan fructotransferase (LFTase) from Microbacterium sp. AL-210. These proteins were purified to apparent homogeneity by Ni-NTA affinity column, Q-sepharose ion exchange and gel filtration chromatography and detected by SDS-PAGE. They were also analyzed by circular dichroism (CD) measurements, JNET secondary structure prediction, activity measurements at various temperatures, and pH analysis. The optimum pH for the enzyme-catalyzed reaction was pH 7.5 and optimum temperature was observed at $55^{\circ}C$. Along with wild-type LFTase, mutants were analyzed by CD measurement, fluorescence analysis and differential scanning calorimetry (DSC). N85S showed less $\alpha$-helix and more $\beta$ strand than others. Also, N85S showed almost the same curve as wild-type in their steady-state fluorescence spectra, whereas mutant D63A and D195N showed higher intensity than wild-type. The amino acid sequence of wild-type LFTase was compared to the sequences of exo-inulinase from Aspergillus awamori, a plant fructan 1-exohydrolase from Cichorium intybus, and Thermotogo maritime (Tm) invertase and showed a high identity with Exo-inulinase from Aspergillus awamori.
Keywords
Levan fructotransferase; differential scanning calorimetry; purification; circular dichroism; fluorescence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Park, L S. Kim, and Y. Choi. 1996. Some physical and physiological properties of difructofuranose dianhydride (DF A III), a new sweetener. Kor. J. Appl. Microbiol. Biotechnol. 24, 619-623
2 Rees, D. 1966. Sucrose Utilization by Zymomonas mobilis: formation of a Levan. Biochem. J. 98, 804-812
3 Saito, K., H. Goto, A. Yokota, and F. Tomita. 1997. Purification of Levan fructotransferase from arthrobacter nicotinovorans GS-9 and production of DFA IV from Levan by the enzyme. Biosci. Biotechnol. Biochem. 61, 1705-1709   DOI   ScienceOn
4 Saito, K, T. Hira, T., Suzuki, H Hara, A. Yokata, and F. Tomita. 1999. Effects of DFA IV in rats: calcium absorption and metabolism of DF A IV by intestinal microorganisms. Biosci. Biotechnol. Biochem. 63, 655-661   DOI   ScienceOn
5 Saito, K and F. Tomita. 2000. Difructose anhydrides: their mass-production and physiological functions. Biosci. Biotechnol. Biochem. 64, 1321-1327   DOI   ScienceOn
6 Song, K B., K S. Bae, Y. B. Lee, K Y. Lee, and S. K Rhee. 2000. Characteristics of levan fructotransferase from Arthrobacter ureafaciens K2032 and difructose anhydride IV formation from levan. Enzyme Microb. Technol. 27, 212-218   DOI   ScienceOn
7 Suzuki, T., H Hara, T. Kasai, and F. Tomita. 1998. Effects of difructose anhydride III on calcium absorption in small and large intestines of rats. Biosci. Biotechnol. Biochem. 62, 837-841   DOI   ScienceOn
8 Dharker, P. N., S. H. Gaikwad, C. G. Suresh, V. Dhuna, M. I. Khan, J. Singh, and S. S. Kamboj. 2009. Comparative studies of two araceous lectins by steady state and time-resolved fluorescence and CD spectroscopy. J. Fluoresc. 19, 239-248   DOI   ScienceOn
9 Tanaka, K, T. Karigane, F. Yamaguchi, S. Nishikawa, and N. Yoshida. 1983. Action of Levan fructotransferase of Arthrobacter ureafaciens on Levanoligosaccharides. J. Biochem. 94, 1569-1578
10 Tanaka, K, T. Uchiyama, K Yamauchi, Y. Suzuki, and S. Hashinguchi. 1982. Formation of a Di-D-fructose dianhydride From Levan by Arthrobacter ureafaciens. Carbohydr. Res. 99, 197-204   DOI   ScienceOn
11 Liu, Z., G. Ramanoudjame, D. Liu, R. O. Fox, V. Jayaraman, M. Kurnikova, and M., Cascio. 2008. Overexpression and functional characterization of the extracellular domain of the human alpha1 glycine receptor. Biochemistry 47, 9803-9810   DOI   ScienceOn
12 Han, Y. W. and M. A. Clarke. 1990. Production and characterization of microbial levan. J. Agric. Food Chem. 38, 393-396   DOI
13 Kojima, I., T. Saito, M. lizuka, N. Minamiura, and S. Ono. 1993. Characterization of levan produced by Serratia sp. J. Ferment. Bioeng. 75, 9-12   DOI   ScienceOn
14 Kokona, B., D. J. Rigotti, A. S. Wasson, S. H. Lawrence, E. K. Jaffe, and R. Fairman. 2008. Probing the oligomeric assemblies of Pea porphobilinogen synthase by analytical ultracentrifugation. Biochemistry (N. Y.) 47, 10649-10656   DOI   ScienceOn
15 Mineo, H, H Hara, H Kikuchi, H Sakurai, and F. Tomita. 2001. Various indigestible saccharides enhance Net calcium transport from the epithelium of the small and large intestine of rats in vitro. J. Nutr. 131, 3243-3246
16 Mitamura, R, H. Hara, Y. Aoyama, and H Chiji. 2002. Supplemental feeding of difructose anhydride III restores calcium absorption impaired by ovariectomy in rats. J. Nutr. 132, 3387-3393
17 Moon, K, K Choi, H Kang, J. Oh, S. B. Jang, c. Park, J. Lee, and J. Chao 2008. Probing the critical residues for intramolecular fructosyl transfer reaction of a levan fructotransferase. J. Microbiol. Biotechnol. 18, 1064-1069
18 Nagem, R, A. Rojas, A. Golubev, O. Korneeva, E. Eneyskaya, and A. Kulminskaya. 2004. Crystal Structure of Exo-inulinase from Aspergillus awamori: The Enzyme Fold and Structural Determinants of Substrate Recognition. J. Mol. Biol. 344, 471-480   DOI   ScienceOn
19 Tang, C. 2008. Thermal denaturation and gelation of vicilin-rich protein isolates from three Phaseolus legumes: A comparative study. LWI - Food Science and Technology 41, 1380-1388   DOI   ScienceOn
20 Verhaest, M., W. V. Ende, K 1. Roy, C. J. De Ranter, A. V. Laere, and A. Rabijns. 2005. X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus. The Plant Journal 41, 400-411   DOI   ScienceOn
21 Cha, J., N. H. Park, S. J. Yang, and T. H. Lee. 2001. Molecular and enzymatic characterization of a levan fructotransferase from Microbacterium sp. AL-210. J. Biotechnol. 91, 49-61   DOI   ScienceOn
22 Alberto, F., E. Jordi, B. Henrissat, and M. Czjzek. 2006. Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide substrate raffinose. Biochem. J. 395, 457-462   DOI   ScienceOn