• Title/Summary/Keyword: Natural binder

Search Result 110, Processing Time 0.027 seconds

Bonding Performance of Maltodextrin and Citric Acid for Particleboard Made From Nipa Fronds

  • Santoso, Mahdi;Widyorini, Ragil;Prayitno, Tibertius Agus;Sulistyo, Joko
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.432-443
    • /
    • 2017
  • Maltodextrin and citric acid are two types of natural materials with the potential as an eco-friendly binder. Maltodextrin is a natural substance rich in hydroxyl groups and can form hydrogen bonds with lignoselulosic material, while citric acid is a polycarboxylic acid which can form an ester bond with a hydroxyl group at lignoselulosic material. The combination of maltodextrin and citric acid as a natural binder materials supposed to be increase the ester bonds formed within the particleboard. This research determined to investigate the bonding properties of a new adhesive composed of maltodextrin/citric acid for nipa frond particleboard. Maltodextrin and citric acid were dissolved in distillated water at the ratios of 100/0, 87.5/12.5, 75/25 and 0/100, and the concentration of the solution was adjusted to 50% for maltodextrin and 60% citric acid (wt%). This adhesive solution was sprayed onto the particles at 20% resin content based on the weight of oven dried particles. Particleboards with a size of $25{\times}25{\times}1cm$, a target density $800kg/m^3$ were prepared by hot-pressing at press temperatures of $180^{\circ}C$ or $200^{\circ}C$, a press time of 10 minute and board pressure 3.6 MPa. Physical and mechanical properties of particleboard were tested by a standard method (JIS A 5908). The results showed that added citric acid level in maltodextrin/citric acid composition and hot-pressing temperature had affected to the properties of particleboard. The optimum properties of the board were achieved at a pressing temperature of $180^{\circ}C$ and the addition of only 20% citric acid. The results also indicated that the peak intensity of C=O group increased and OH group decreased with the addition of citric acid and an increase in the pressing temperature, suggesting an interreaction between the hydroxyl groups from the lignocellulosic materials and carboxyl groups from citric acid to form the ester groups.

Physical Properties of Lightweight and Normal Weight Concretes due to Water-Cement Ratio Changes (물-시멘트비 변화에 따른 경량콘크리트와 일반콘크리트의 물리적 성질)

  • Lee, Chang-Soo;Kim, Jae-Nam;Lim, Youn;Ma, Moon-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.11-20
    • /
    • 2009
  • By using the artificial lightweight aggregate for the natural aggregate depletes and destruction of environment and the application of lightweight concrete in structure, the lightweight concrete is manufactured. The fundamental characteristics by the waterbinder ratio was evaluated. It is suggested the method to control of pre-absorbed water of the lightweight aggregate. Lightweight concrete with pre-absorbed aggregate has similar characteristics compared to normal weight concrete regardless of water-binder ratio. According to the water-binder ratio, the drying condition, and the rebar, the unit mass of the lightweight concrete showed the reduction of 14.6${\sim}$21.0% as the range of 1,668${\sim}$1,998 $kg/m^3$ in comparison to the normal weight concrete. The lightweight aggregate pre-absorbed water showed the deferent evaporation quantity according to the water-binder ratio. As the water-binder ratio is lower, the oven dry vapour water is larger, therefore the internal curing water is increasing. In the same water-binder, comparing the normal concrete the lightweight concrete shows lower compressive strength which is due to the different strength of an aggregate. In the air dry curing, the normal weight concrete has a lower strength improvement effect in w/c 0.3 than the ratio 0.4 and 0.5. However, the strength improvement effect has increasing as the water-binder ratio was low in the light concrete.

Performance of polymer concrete incorporating waste marble and alfa fibers

  • Mansour, Rokbi;El Abidine, Rahmouni Z.;Brahim, Baali
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.331-343
    • /
    • 2017
  • In this study a polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with natural Alfa fibers has been studied. The results of flexural testing of unreinforced polymer concrete with different rates of charges (marble) showed that the concrete with 20% of marble is stronger and more rigid compared to other grades. Hence, a rate of 20% of marble powder is selected as the optimal value in the development of polymer concrete reinforced Alfa fibers. The fracture results of reinforced polymer concrete with 1 and 2 wt% of chopped untreated or treated Alfa fibers showed that treated Alfa (5% NaOH) fiber reinforced polymer concrete has higher fracture properties than other composites. We believe that this type of concrete provides a very promising alternative for the building industry seeking to achieve the objectives of sustainable development.

Characterization of Environment-Friendly Ceramic Coating Materials (친환경적인 분말형 세라믹 페인트의 특성평가)

  • 이제철;신영훈;김태현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.521-526
    • /
    • 2002
  • In this paper, we described about the characteristic evaluation of environment-friendly ceramic paint with calcium-silicate mineral as a main binder. Particularly, we performed discharge of the environmental poisoning materials(e.g. VOCs, heavy metal, etc.), and properties of paint slurry and coating film of the ceramic paint. In the comparison of the ceramic paint with natural paint and mineral paint which were known as our environment-friendly paints, ceramic paint had good characteristics in the environmental safety and properies of wet slurry and dried coating film.

  • PDF

A Study on the Application of Chemical Grouting Method for Aging Reservoir Reinforce According to the Change of Binder and Using Water (결합재 및 사용수 변화에 따른 노후저수지 보강용약액주입공법 적용에 관한 연구)

  • Song, Sang-Hwon;Seo, Se-Gwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.4
    • /
    • pp.45-52
    • /
    • 2019
  • Chemical grouting method is mainly used for construction of dams and reservoirs, stabilization and reinforcement of slopes, reinforcement of soft grounds such as embankments, dredging and landfills, the order of earthquake response method, and the reinforcement of structures. Recently, it is widely applied in construction sites such as highways, airfields, high-speed railways, subsea facilities, port construction works, tunnels, and subway works. As such, the demand for grouting continues to increase. The development of the grouting method was focused on increasing the strength of the ground, and the development of the chemical additives, the injection device, and the stirring device were mainly performed. But ordinary portland cement used for grouting is a product that consumes natural resources such as limestone, generates a large amount of greenhouse gases, consumes a large amount of energy sources, and it is time to develop products and new methods to replace them. In this study, Ordinary Portland Cement and New Grouting Binder (circulating fluidized bed boiler fly and blast furnace slag) were compared and analyzed by the following test. Homo-gel strength and homo-gel time, water quality analysis of the water used and soil contamination process tests of homo-gel samples were performed. In the case of NGB, when Using water is used as the reservoir water, the strength measured smaller than that of the other water. However, it shows about 2.5 times greater than the homo-gel compressive strength applied to OPC (7-day, reservoir water), so there is no problem with water quality when applied.

Characterizations and Quantitative Estimation of Alkali-Activated Binder Paste from Microstructures

  • Kar, Arkamitra;Ray, Indrajit;Halabe, Udaya B.;Unnikrishnan, Avinash;Dawson-Andoh, Ben
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.213-228
    • /
    • 2014
  • Alkali-activated binder (AAB) is recently being considered as a sustainable alternative to portland cement (PC) due to its low carbon dioxide emission and diversion of industrial wastes and by-products such as fly ash and slag from landfills. In order to comprehend the behavior of AAB, detailed knowledge on relations between microstructure and mechanical properties are important. To address the issue, a new approach to characterize hardened pastes of AAB containing fly ash as well as those containing fly ash and slag was adopted using scanning electron microscopy (SEM) and energy dispersive X-ray spectra microanalyses. The volume stoichiometries of the alkali activation reactions were used to estimate the quantities of the sodium aluminosilicate (N-A-S-H) and calcium silicate hydrate (CSH) produced by these reactions. The 3D plots of Si/Al, Na/Al and Ca/Si atom ratios given by the microanalyses were compared with the estimated quantities of CSH(S) to successfully determine the unique chemical compositions of the N-A-S-H and CSH(S) for ten different AAB at three different curing temperatures using a constrained nonlinear least squares optimization formulation by general algebraic modeling system. The results show that the theoretical and experimental quantities of N-A-S-H and CSH(S) were in close agreement with each other. The $R^2$ values were 0.99 for both alkali-activated fly ash and alkali-activated slag binders.

Assessment of compressive strength of cement mortar with glass powder from the early strength

  • Wang, Chien-Chih;Ho, Chun-Ling;Wang, Her-Yung;Tang, Chi
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • The sustainable development principle of replacing natural resources with renewable material is an important research topic. In this study, waste LCD (liquid crystal display) glass powder was used to replace cement (0%, 10%, 20% and 30%) through a volumetric method using three water-binder ratios (0.47, 0.59, and 0.71) to make cement mortar. The compressive strength was tested at the ages of 7, 28, 56 and 91 days. The test results show that the compressive strength increases with age but decreases as the water-binder ratio increases. The compressive strength slightly decreases with an increase in the replacement of LCD glass powder at a curing age of 7 days. However, at a curing age of 91 days, the compressive strength is slightly greater than that for the control group (glass powder is 0%). When the water-binder ratios are 0.47, 0.59 and 0.71, the compressive strength of the various replacements increases by 1.38-1.61 times, 1.56-1.80 times and 1.45-2.20 times, respectively, during the aging process from day 7 to day 91. Furthermore, a prediction model of the compressive strength of a cement mortar with waste LCD glass powder was deduced in this study. According to the comparison between the prediction analysis values and test results, the MAPE (mean absolute percentage error) values of the compressive strength are between 2.79% and 5.29%, and less than 10%. Thus, the analytical model established in this study has a good forecasting accuracy. Therefore, the proposed model can be used as a reliable tool for assessing the design strength of cement mortar from early age test results.

A Study on High Performance Electromagnetic Wave Absorber Using NC and Natural Lacquer Binder (NC와 옻칠을 소재로 한 고성능 전파흡수체에 관한 연구)

  • Kim, Dong-Il;Choi, Dong-Han;Park, Woo-Keun;Song, Jae-Man
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.75-80
    • /
    • 2003
  • The electromagnetic wave absorption ability of natural ceramics(NC), natural lacquer, and rubber was investigated. The natural ceramics showed absorption ability above 2.5dB at 2.5GHz~4.5GHz and natural lacquer showed better electromagnetic wave absorption ability than that of rubber. The simulation results of electromagnetic wave absorber ability in a absorber composed of natural lacquer and ferrite showed the reflection coefficient of -16dB at 0.5GHz~10GHz. It was shown that from the simulation results, the electromagnetic wave absorber composed of lacquer as a backing material have better absorption ability than that of the electromagnetic absorber composed of rubber.

Synthesis of binary Cu-Se and In-Se nanoparticle inks using cherry blossom gum for CuInSe2 thin film solar cell applications

  • Pejjai, Babu;Reddy, Vasudeva Reddy Minnam;Seku, Kondaiah;Cho, Haeyun;Pallavolu, Mohan Reddy;Le, Trang Thi Thuy;Jeong, Dong-seob;Kotte, Tulasi Ramakrishna Reddy;Park, Chinho
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2430-2441
    • /
    • 2018
  • Selenium (Se)-rich binary Cu-Se and In-Se nanoparticles (NPs) were synthesized by a modified heat-up method at low temperature ($110^{\circ}C$) using the gum exudates from a cherry blossom tree. Coating of CISe absorber layer was carried out using Se-rich binary Cu-Se and In-Se NPs ink without the use of any external binder. Our results indicated that the gum used in the synthesis played beneficial roles such as reducing and capping agent. In addition, the gum also served as a natural binder in the coating of CISe absorber layer. The CISe absorber layer was integrated into the solar cell, which showed a power conversion efficiency (PCE) of 0.37%. The possible reasons for low PCE of the present solar cells and the steps needed for further improvement of PCE were discussed. Although the obtained PCE is low, the present strategy opens a new path for the fabrication of eco-friendly CISe NPs solar cell by a relatively chief non-vacuum method.

Optimization of ferrochrome slag as coarse aggregate in concretes

  • Yaragal, Subhash C.;Kumar, B. Chethan;Mate, Krishna
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.421-431
    • /
    • 2019
  • The alarming rate of depletion of natural stone based coarse aggregates is a cause of great concern. The coarse aggregates occupy nearly 60-70% by volume of concrete being produced. Research efforts are on to look for alternatives to stone based coarse aggregates from sustainability point of view. Response surface methodology (RSM) is adopted to study and address the effect of ferrochrome slag (FCS) replacement to coarse aggregate replacement in the ordinary Portland cement (OPC) based concretes. RSM involves three different factors (ground granulated blast furnace slag (GGBS) as binder, flyash (FA) as binder, and FCS as coarse aggregate), with three different levels (GGBS (0, 15, and 30%), FA (0, 15, and 30%) and FCS (0, 50, and 100%)). Experiments were carried out to measure the responses like, workability, density, and compressive strength of FCS based concretes. In order to optimize FCS replacement in the OPC based concretes, three different traditional optimization techniques were used (grey relational analysis (GRA), technique for order of preference by similarity (TOPSIS), and desirability function approach (DFA)). Traditional optimization techniques were accompanied with principal component analysis (PCA) to calculate the weightage of responses measured to arrive at the final ranking of replacement levels of GGBS, FA, and FCS in OPC based concretes. Hybrid combination of PCA-TOPSIS technique is found to be significant when compared to other techniques used. 30% GGBS and 50% FCS replacement in OPC based concrete was arrived at, to be optimal.