• Title/Summary/Keyword: Natural Vibration Frequency

Search Result 2,155, Processing Time 0.033 seconds

Free Vibration Analysis of Perforated Shell Submerged in Fluid (유체에 잠긴 다공 원통형 쉘의 자유진동해석)

  • Jhung Myung-Jo;Jo Jong-Chull
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.247-258
    • /
    • 2006
  • For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with equivalent material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the equivalent material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

Motion-based design of TMD for vibrating footbridges under uncertainty conditions

  • Jimenez-Alonso, Javier F.;Saez, Andres
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.727-740
    • /
    • 2018
  • Tuned mass dampers (TMDs) are passive damping devices widely employed to mitigate the pedestrian-induced vibrations on footbridges. The TMD design must ensure an adequate performance during the overall life-cycle of the structure. Although the TMD is initially adjusted to match the natural frequency of the vibration mode which needs to be controlled, its design must further take into account the change of the modal parameters of the footbridge due to the modification of the operational and environmental conditions. For this purpose, a motion-based design optimization method is proposed and implemented herein, aimed at ensuring the adequate behavior of footbridges under uncertainty conditions. The uncertainty associated with the variation of such modal parameters is simulated by a probabilistic approach based on the results of previous research reported in literature. The pedestrian action is modelled according to the recommendations of the Synpex guidelines. A comparison among the TMD parameters obtained considering different design criteria, design requirements and uncertainty levels is performed. To illustrate the proposed approach, a benchmark footbridge is considered. Results show both which is the most adequate design criterion to control the pedestrian-induced vibrations on the footbridge and the influence of the design requirements and the uncertainty level in the final TMD design.

An Implementation Method of Linearized Equations of Motion for Multibody Systems with Closed Loops

  • Bae, D.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.71-78
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the variables are tightly coupled by the position, velocity, and acceleration level coordinates, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all variables, which are coupled by the constraints. The position velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The Perturbed constraint equations are then simultaneously solved for variations of all variables only in terms of the variations of the independent variables. Finally, the relationships between the variations of all variables and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent variables variations.

A Study of the Development of the Composite Rotor Blade for Unmanned Helicopter (무인헬리콥터용 복합재료 로터 블레이드 개발에 관한 연구)

  • Sim J.W.;Kee Y.J.;Kim S.B.;Kim S.H.;Ko E.H.;Chi K.H.;Kim S.K.;Chung C.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1385-1389
    • /
    • 2005
  • This paper describes the design, analysis and manufacture procedure of the composite blade for hingeless rotor system of unmanned helicopters. Helicopter rotor system is the key structural unit that produces thrust and control forces for intended flight conditions. In this work, a hingeless rotor system is adopted, and base on the design requirements for rotor system, composite blade section design and calculation of material properties were performed. In order to avoid the unstable state such as resonance, vibration characteristics of rotor system were analyzed. Finally, this paper describes the forming and manufacture of composite blade.

  • PDF

Analysis of Rolled Beam Bridge by means of Specially Orthotropic Laminates Theory (특별직교이방성 적층판이론에 의한 압연형교의 해석)

  • Han, Bong-Koo;Lee, Chang-Soo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.35-40
    • /
    • 2010
  • The specially orthotropic plate theory is used for analysis of panels made of girders and cross-beams. The cross-sections of both girders and cross-beams are H-types. The results of application of this method to rolled beam bridge by using specially orthotropic plate theory is presented. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. According to numerical examination given in this paper, the result by the plate theory is 2.43 times stiffer than that of beam theory.

  • PDF

Design of a High Stiffness Machining Robot Arm with Double Parallel Mechanism (기계가공작업을 위한 강성이 큰 2단 평행구조 로보트 암 설계)

  • 이민기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.22-37
    • /
    • 1995
  • Industrial robot has played a central role in the production automation such as welding, assembling, and painting. There has been, however, little effort to the application of robots in machining work(grinding, cutting, milling, etc.) which is typical 3D work. The machining automation requires a high stiffness robot arm to reduce deformation and vibration. Conventional articulated robots have serially connecting links from the base to the gripper. So, they have very weak structure for he machining work. Stewart Platform is a typical parallel robotic mechanism with a very high stiffness but it has a small work space and a large installation space. This research proposes a new machining robot arm with a double parallel mechanism. It is composed of two platforms and a central axis. The central axis will connect the motions between the first and the second platforms. Therefore, the robot has a large range of work space as well as a high stiffness. This paper will introduce the machining work using the robot and design the proposed robot arm.

A Combined Bearing Arrangement for High Damping Spindle Systems (고감쇠 주축 시스템을 위한 베어링의 복합배열에 관한 연구)

  • Lee, C.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.139-145
    • /
    • 1996
  • The machining accuracy and performance is largely influenced by the static, dynamic and thermal characteristics of spindle systems in machine tools, because the spindle system is a intermedium for cutting force from tool and machine powef from motor. Large cutting force and power are transmitted by bearing with a point or line contact. So, the spindle system is the static and dynamic weakest point in machine structure. For improvement of static stiffness of spindle system can be changed design parameters, such as diameter of spindle, stiffness of bearing and bearing span. But for dynamic stiffness, the change of the design parameters are not useful. In this paper, the combined bearing arrangement is suggested for high damping spindle system. The combined bearing arrangement is composed of tandem double back to back arrangement type ball bearins and a high damping hydrostatic bearing. The variation of static deflection and amplitude in first natural frequency is evaluated with the location of hydrostatic bearing between front and rear ball bearing. The optimized location of hydrostatic bearing for high static and dynamic stiffness is determined rapidly and exactly using the mode shape and transfer function of spindle. The calculation of damping effect on vibration by unbalance of grinding wheel and pulley in optimized spindle system is carried out to verify the validity of the combined bearing arrangement. Finally, the simulation of grinding process show that the surface roughness of workpiece with high damping spindle system is 60% better than with ball bearing spindle system.

  • PDF

Dynamic Characteristics of a Rotor-Journal Bearing System Driven by Gearboxes (기어박스로 구동되는 축-저널베어링계의 동적특성에 관한 연구)

  • 박상규
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.565-575
    • /
    • 1995
  • Gearboxes are often used in the petrochemical and electrical power plants to transmit mechanical power between two branches of a machinery train rotating at different speeds. When the gearboxes are connected with rotors supported by journal bearings, bearing loads vary in magnitude and direction with rotor speed and torque transmitted by the gearboxes. In this study, dynamic characteristics of the system which consists of gearboxes and a rotor supported by journal bearings are investigated analytically and experimentally by employing the polynomial transfer matrix method and modal analysis under different speeds and torque levels. Journal bearing loads due to the transmitted torque are claculated analytically and the stiffness and damping coefficient of the journal bearings are obtained using finite element method. Comparison of the analytical and experimental results shows that the cross coupled stiffness coefficients increase with increasing rotor speed, while the cross coupled damping coefficients decrease. This generates the oil whirl instability in the journal bearings. As the transmitted torque level goes up, the stiffness coefficients of the journal bearing and the first horizontal natural frequency increase. High levels of the transmitted torque produce high bearing stiffness since the contact loads of the mating gear teeth increase. The logarithmic decrement, which is a stability indicator, is shown to decrease with increasing speed and decreasing torque. Thus, at the low torque level, the system become unstable even at the low shaft speed.

  • PDF

A Study on Design Parameters of Dual Mass Flywheel System (Dual Mass Flywheel 시스템의 설계 파라미터에 관한 연구)

  • 송준혁;홍동표;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.90-98
    • /
    • 1998
  • A Dual Mass Flywheel(D.M.F.) system is an evolution to the reduction of torsional vibration and impact noise occurring in powertrain when a vehicle is either moving or idling. The D.M.F. system has two flywh-eels, which is different from the conventional clutch system. One section belongs to the mass moment of in-ertia of the engine-side. The other section increases the mass moment of inertia of the transmission-side. These two masses are connected via a spring/damping system. This reduces the speed at which the dreaded resonance occurs to below idle speed. Since 1984m D.M.F. system has been developed. However, the processes of development of D.M.F. system don't have any difference from the trial and error method of conventional clutch system. This paper present the method for systematical design of D.M.F. system with dimensionless design varia-bles of D.M.F. system, mass ratio between two flywheels, natural frequency rate of two flywheels, and visc-osity coefficient. And expermental results are used to prove these theoretical results.

  • PDF

Optimal Design of CEDM considering the Dynamic Characteristics (제어봉 구동장치의 동적 특성을 고려한 최적설계)

  • 김인용;진춘언
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.225-231
    • /
    • 1997
  • The dynamic characteristics of Control Element Drive Mechanism(CEDM) for Korea Standard Nuclear Power Plant are studied with the CEDM modeled as a secondary mass in a simplified two degree of freedom system, while the reactor vessel as a primary mass. The optimal .mu.-f curve is developed to reduce the response amplitudes of both primary and secondary masses. In order to improve a design it is proposed that the natural frequency ratio, f, should be converged to 0.93, the mass ratio, .mu., should not be reduced, and the result should be converged to the optimal .mu.-f curve. Optimal design for CEDM components has been carried out and the response amplitude ratios of reactor are reduced 10.5 - 19.7% while those of CEDM are reduced 6.3 - 3.4%.

  • PDF