• Title/Summary/Keyword: Natural Shape Function

Search Result 215, Processing Time 0.024 seconds

A study on the vibration characteristics of pssenger car radial tire (승용차 타이어의 진동 특성에 관한 연구)

  • 김병삼;이태근;양성모;정태진
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.76-83
    • /
    • 1993
  • The vibration characteristics of radial tire are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tielking method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure are determined experimentally by using the transfer function method. Results show that material property and wear are parameter for shifting of natural frequency and damping.

  • PDF

A Finite Thin Circular Beam Element for In-Plane Vibration Analysis of Curved Beams

  • Kim Chang-Boo;Park Jung-Woo;Kim Sehee;Cho Chongdu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2187-2196
    • /
    • 2005
  • In this paper, the stiffness and the mass matrices for the in-plane motion of a thin circular beam element are derived respectively from the strain energy and the kinetic energy by using the natural shape functions of the exact in-plane displacements which are obtained from an integration of the differential equations of a thin circular beam element in static equilibrium. The matrices are formulated in the local polar coordinate system and in the global Cartesian coordinate system with the effects of shear deformation and rotary inertia. Some numerical examples are performed to verify the element formulation and its analysis capability. The comparison of the FEM results with the theoretical ones shows that the element can describe quite efficiently and accurately the in-plane motion of thin circular beams. The stiffness and the mass matrices with respect to the coefficient vector of shape functions are presented in appendix to be utilized directly in applications without any numerical integration for their formulation.

Free Vibration of Tapered Beams Under Tensile Axial Force (軸引張力을 받는 變斷面 보의 自由振動)

  • Lee, Byeong-Gu;Kim, Yeon-Tae;Mo, Jeong-Man
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.57-65
    • /
    • 1992
  • The main purpose of this paper is to present both the natural frequencies and mode shapes of tapered beams under tensile axial force. The differential equation governing planar free vibration for tapered beams under tensile axial force is derived as nondimensional form. The three kinds of cross sectional shape are considered in differential equation. The Runge-Kutta method and Determinant Search method are used to perform the integration of the differential equation and to determine the natural frequencies, respectively. The hinged-hinged, hinged-clamped, clamped-clamped and constraints are applied in numerical examples. The lowest four nondimensional natural frequencies are reported as the function of nondimensional tensile axial force. The fundamental natural frequencies are presented when section ratios and nondimensional axial forces are varied. The effects of cross sectional shapes are reported and some typical mode shapes are also presented.

  • PDF

Naturalization of Implant Prostheses (자연감 있는 임플란트 보철물)

  • Kim, Dae-Hyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.8 no.1
    • /
    • pp.96-103
    • /
    • 1999
  • Restoration of missing oral tissues by using implant therapy is one of viable options in prosthodontic treatment. The purpose of oral rehabilitation are function, esthetics and phonetics. Recently, with the increasing esthetic demand of the patient, dentists and laboratory technicians are more concern ed about natural appearance of implant prostheses. There are so many factors which affect final esthetic results of treatment such a shape, color, proportion, gingival contour etc. To provide natural and vivid looking artificial prostheses to a patient, the careful diagnosis, treatment plan and laboratory Support is crucial. Several cases will be reviewed and discussed in terms of material, gingival shape, contour, speech and connection mode etc. to fabricate natural looking implant prostheses.

  • PDF

Free Vibrations of Tapered Cantilever Arches with Variable Curvature (변단면 변화곡율 캔틸레버 아치의 자유진동)

  • 이병구;이용수;오상진
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.353-360
    • /
    • 2000
  • Numerical methods are developed for calculating the natural frequencies and mode shapes of the tapered cantilever arches with variable curvature. The differential equations governing the free vibrations of such arches are derived and solved numerically, in which the effect of rotatory inertia is included. The parabolic shape is chosen as the arch with variable curvature while both the prime and quadratic arched members are considered as the tapered arch with variable curvature while both the prime and quadratic arched members are considered as the tapered arch. Comparisons the natural jfrequencies between this study and finite element method SAP 90 seve to validate the numerical method developed herein. The lowest four natural frequencies are reported as a function of four non-dimensional system parameters. The effects of both the rotatory inertia and cross-sectional shape are reported. Also, the typical mode shapes of stress resultants as well as the displacements are reported.

  • PDF

Development of finite element analysis program and simplified formulas of bellows and shape optimization (벨로우즈에 대한 유한요소해석 프로그램 및 간편식의 개발과 형상최적설계)

  • Koh, Byung-Kab;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1195-1208
    • /
    • 1997
  • Bellows is a component in piping systems which absorbs mechanical deformation with flexibility. Its geometry is an axial symmetric shell which consists of two toroidal shells and one annular plate or conical shell. In order to analyze bellows, this study presents the finite element analysis using a conical frustum shell element. A finite element analysis is developed to analyze various bellows. The validity of the developed program is verified by the experimental results for axial and lateral stiffness. The formula for calculating the natural frequency of bellows is made by the simple beam theory. The formula for fatigue life is also derived by experiments. The shape optimal design problem is formulated using multiple objective optimization. The multiple objective functions are transformed to a scalar function by weighting factors. The stiffness, strength and specified stiffness are considered as the multiple objective function. The formulation has inequality constraints imposed on the fatigue limit, the natural frequencies, and the manufacturing conditions. Geometric parameters of bellows are the design variables. The recursive quadratic programming algorithm is selected to solve the problem. The results are compared to existing bellows, and the characteristics of bellows is investigated through optimal design process. The optimized shape of bellows is expected to give quite a good guideline to practical design.

Shape Optimal Design of Variable Sandwich Structure (가변 샌드위치 구조물의 형상최적설계)

  • 박철민;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2162-2171
    • /
    • 1993
  • Geneal Structure optimization is utilized to minimize the weight of structures while satisfying constraints imposed on stress, displacements and natural frequencies, etc. Sandwich structures consist of inside core and outside face sheets. The selected sandwich structures are isotropic sandwich beams and isotropic sandwich plate. The face sheets are treated as membrane and assumed to carry only tensions, while the core is assumed to carry only transverse shear. The characteristic of the varying area are considered by adding the projected component of the tension to the transverse shear. The bending theory and energy method are adopted for analyzing sandwich beams and plates, respectively. In the optimization process, the cost function is the weight of a structure, and a deflection and stress constraints are considered. Design variable are thickness and tapering coefficients which determine the shape of a structure. An existing optimization code is used for solving the formulated problems.

Structural damage identification using an iterative two-stage method combining a modal energy based index with the BAS algorithm

  • Wang, Shuqing;Jiang, Yufeng;Xu, Mingqiang;Li, Yingchao;Li, Zhixiong
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.31-45
    • /
    • 2020
  • The purpose of this study is to develop an effective iterative two-stage method (ITSM) for structural damage identification of offshore platform structures. In each iteration, a new damage index, Modal Energy-Based Damage Index (MEBI), is proposed to help effectively locate the potential damage elements in the first stage. Then, in the second stage, the beetle antenna search (BAS) algorithm is used to estimate the damage severity of these elements. Compared with the well-known particle swarm optimization (PSO) algorithm and genetic algorithm (GA), this algorithm has lower computational cost. A modal energy based objective function for the optimization process is proposed. Using numerical and experimental data, the efficiency and accuracy of the ITSM are studied. The effects of measurement noise and spatial incompleteness of mode shape are both considered. All the obtained results show that under these influences, the ITSM can accurately identify the true location and severity of damage. The results also show that the objective function based on modal energy is most suitable for the ITSM compared with that based on flexibility and weighted natural frequency-mode shape.

Damage Evaluation of Porcelain Insulators Using the Frequency Response Function (주파수응답함수(FRF)를 이용한 자기 애자의 손상평가)

  • Choi, In-Hyuk;Son, Ju-Am;Oh, Tae-Keun;Yoon, Young-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.122-128
    • /
    • 2019
  • Porcelain insulators have been used mainly for power line fixing and electrical insulation in transmission towers. Porcelain insulators have generally a 30 years desired life, but over 50% exceed their life expectancy. Since the damage to porcelain insulators is usually accompanied by enormous loss of human resource material, their efficient maintenance has emerged as an important issue. In this regard, this study applied a frequency response function (FRF) for integrity assessment of the insulator. The characteristics of the FRF according to damage types were identified and analyzed by the change in natural frequencies, curve shape, attenuation, and Nyquist diagram stability. The results showed significant differences in the FRF according to damage types, which can be used as basic data for the effective integrity assessment of porcelain insulators.

MESHLESS AND HOMOTOPY PERTURBATION METHODS FOR ONE DIMENSIONAL INVERSE HEAT CONDUCTION PROBLEM WITH NEUMANN AND ROBIN BOUNDARY CONDITIONS

  • GEDEFAW, HUSSEN;GIDAF, FASIL;SIRAW, HABTAMU;MERGIAW, TADESSE;TSEGAW, GETACHEW;WOLDESELASSIE, ASHENAFI;ABERA, MELAKU;KASSIM, MAHMUD;LISANU, WONDOSEN;MEBRATE, BENYAM
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.675-694
    • /
    • 2022
  • In this article, we investigate the solution of the inverse problem for one dimensional heat equation with Neumann and Robin boundary conditions, that is, we determine the temperature and source term with given initial and boundary conditions. Three radial basis functions(RBFs) have been used for numerical solution, and Homotopy perturbation method for analytic solution. Numerical solutions which are obtained by considering each of the three RBFs are compared to the exact solution. For appropriate value of shape parameter c, numerical solutions best approximates exact solutions. Furthermore, we have shown the impact of noisy data on the numerical solution of u and f.