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MESHLESS AND HOMOTOPY PERTURBATION METHODS

FOR ONE DIMENSIONAL INVERSE HEAT CONDUCTION

PROBLEM WITH NEUMANN AND ROBIN BOUNDARY

CONDITIONS
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Abstract. In this article, we investigate the solution of the inverse prob-

lem for one dimensional heat equation with Neumann and Robin boundary
conditions, that is, we determine the temperature and source term with

given initial and boundary conditions. Three radial basis functions(RBFs)

have been used for numerical solution, and Homotopy perturbation method
for analytic solution. Numerical solutions which are obtained by consid-

ering each of the three RBFs are compared to the exact solution. For

appropriate value of shape parameter c, numerical solutions best approx-
imates exact solutions. Furthermore, we have shown the impact of noisy

data on the numerical solution of u and f.
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1. Introduction

Let I ⊂ R be a bounded domain and let x0 be a fixed point in I. We will
determine the function u(x, t) (called temperature) and the source term f(t)
(called surface heat flux) satisfying the heat(diffusion) equation

∂u

∂t
=

∂2u

∂x2
+ f(t), 0 < t ≤ T and x ∈ I = (a, b) (1)

subject to

IC : u(x, 0) = g(x), (2)
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BC : αu(x, t) + β
∂u(x, t)

∂x
=

{
h1(t), if x = a
h2(t), if x = b

(3)

α and β(̸= 0) are constants.

AC : u(x0, t) = E(t). (4)

Problem (1) together with (2), (3), and (4) is called inverse problem. The
name arises due to the determination of surface heat flux(f(t)) and tempera-
ture (u(x, t)) from temperature measurements at one or more interior locations.
Though our problem is source determination inverse problem, inverse problems
may be subdivided into determination of boundary value, initial value, mate-
rial properties, source, and shape [1]. Inverse heat conduction problems arise in
many physical applications where heat transfer occurs [2].

The numerical method we apply to solve (1), (2), (3), (4) is meshless method.
Meshless methods for the solution of PDEs can be grouped into methods based
on RBF interpolation, and the least squares technique. Hardy in [3] intro-
duced the radial basis functions interpolation to approximate two-dimensional
geographical surfaces based on scattered data. Then Kansa in[4] investigated
a meshless method based on multiquadrics RBFs for the numerical solution
of PDEs. Later, Golberg et al. extended the idea[5]. The existence, unique-
ness, and convergence of the RBFs approximation was discussed by Franke
and Schaback[6], Madych and Nelson[7], and Micchelli[8]. Meshless methods
based on RBFs have been applied to solve Rosenau equation [9], fractional
diffusion equation[10], Poisson and Helmholtz equation[11], two dimensional
heat equation[12], compressible Euler equation with application in finite-rate
Chemistry[13], one dimensional advection diffusion equation[14] and nonlinear
integral equations[15]. The advantage of meshless method over mesh methods
for example, finite difference methods, finite element methods and finite volume
method, is: does not require domain discretization. These methods were applied
for inverse heat conduction problems[16, 17, 18]. The mentioned mesh methods
have been extensively used to find the solution of PDEs. In comparison to mesh
methods, meshless method is widely used to solve problems in recent years.

The inverse problem for one dimensional diffusion equation with Dirichlet
boundary conditions has been studied in [19, 20, 21, 22]. In [19] and [20]
the authors determined the source term using moving least square method and
Gaussian radial basis function respectively. In [21] the authors determined the
unknown temperature at x = 0 and section of initial condition at t = 0 for
Neumann boundary condition. The authors in [23] discussed inverse problems
for multidimensional heat equations where the value of the unknown at a sin-
gle point on the boundary is given. Pyatkov and Safonov studied some classes
of inverse problems of recovering a source[24]. In general, meshless methods
are applicable to compute the solution of problems arising in engineering and
physics[25, 26, 27, 28, 29], and in economics[30].

So far we have discussed meshless methods for solving partial differential
equations(PDEs). There are analytic methods that have been applied to solve
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PDEs. We may mention Adomain decomposition method and Homotopy per-
turbation method. In this article we use the well known Homotopy perturbation
method since it is simple to use. It is the one that provides series solution to
linear and nonlinear PDEs [31, 32, 33, 34]. This method is in recursive sequence
forms which can be used to get the closed form of the solutions [35, 36]. It has
been applied for solving PDEs arising in the transmission of nerve impulses[37]
and modeling of flow in porous media[38]. It computed the solution of non-
linear fractional PDE[39] and non-linear system of second order boundary value
problems[40].

The paper is organized as follows. In section two we discuss about RBFs,
meshless method based on RBFs and effect of noisy data. In section three we
see Homotopy perturbation method. In section four we include application of
meshless method. Finally conclusion is drawn in section five.

2. Meshless Method based On RBFs

Define a function ϕ(r) : [0,∞) → R. Let S = {x1, · · · , xN} be the set of N
distinct collocation points, where Sint = {x2, · · · , NN−1} are interior points and
Sbdry = S \Sint are boundary points. We may describe interior point, boundary
point and point x0 graphically in figure(1).

Figure 1. Collocation points and point x0

We use the notations ϕk(x) = ϕ(|x− xk|), for k = 1, 2, · · · , N.
In this paper the approximate function ua(x, t) of u(x, t) can be represented

as

ua(x, t) =

N∑
k=1

λk(t)ϕk(x),∀x ∈ I and t ∈ [0, T ], (5)

where ϕk(x) is radial basis function(RBF) and λk(t) is unknown RBF coefficient.
A radial basis function ϕ on [0,∞) is called positive definite if for all choices

of finite distinct points x1, x2, x3, · · · , xN , the matrix M is positive definite[41]
where

M = Mi,k = ϕk(xi).
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A function ϕk(x) is conditionally positive definite of order m[42] , if for all sets
{x1, x2, · · · , xN} of distinct points, and all vectors ν (̸= 0) satisfying

N∑
k=1

νkP (xk) = 0

for any polynomial P of degree at most m− 1 , we have

N∑
i=1

N∑
j

νiνjϕ(xi − xj) > 0.

If a matrix M is positive definite, then det(M) ̸= 0. Hence, if the radial basis
function ϕ in (5) is positive definite, the following system of linear equation is
solvable.  ϕ1(x1) · · · ϕN (x1)

...
...

...
ϕ1(xN ) · · · ϕN (xN )


 λ1

...
λN

 =

 ua
1
...

ua
N

 (6)

We can also show that equation (6) is solvable if ϕ is conditionally positive
definite of order one[43]. The above system of linear equations is obtained from
(5) at the collocation points. In this paper the known RBFs are considered,
which are listed in table(1). These RBFs are infinitely differentiable and depend

Table 1. Radial basis functions

No RBFs Definition[20, 14, 44]

1 Gaussian (GA) ϕ(r) = e−cr2 Positive definite[45]

2 Hardy multiquadrics ϕ(r) =
√
r2 + c2 Conditionally positive

(HMQ) definite of order 1[46]

3 Inverse multiquadrics ϕ(r) = (
√
r2 + c2)−1 Positive definite[47]

(IMQ)

on the shape parameter c > 0[48, 49]. Shape parameter controls the fitting of a
smoothing surface to the data, and affects the condition number of the coefficient
matrix in equation (6). Even though the optimal choice of shape parameter is
still an open problem[50], researchers proposed different methods to compute the
optimal value for c [46, 51]. As it is indicated in [52], shape parameter depends
on number of grid points, distribution of grid points, interpolation function and
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condition number of a matrix. We have been chosen shape parameters in table
(2) for the problems we consider in this article.

Table 2. Shape parameters

Shape parameters
No RBFs

Neumann BCs Robin BCs

1 Gaussian (GA) 0.061 0.01

2 Hardy multiquadrics (HMQ) 6 9.2

3 Inverse multiquadrics (IMQ) 7.4 13.8

We now make our problems suitable to compute numerical solution via mesh-
less method based on RBFs. So, from equation (1) and (4) we have

E
′
(t) =

∂u(x0, t)

∂t
=

∂2u(x0, t)

∂x2
+ f(t) (7)

From equation(7) we get

f(t) = E
′
(t)−

[
∂2u(x0, t)

∂x2

]
(8)

Consequently, equation(1) becomes

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
+ E

′
(t)−

[
∂2u(x0, t)

∂x2

]
(9)

Substituting equation(5) into (9),(2), (3), and (8) we obtain respectively

N∑
k=1

[
λ

′

k(t)ϕk(x)
]
=

N∑
k=1

[
λk(t)ϕ

′′

k(x)
]
+ E

′
(t)−

N∑
k=1

[
λk(t)ϕ

′′

k(x0)
]
,∀x ∈ I (10)

N∑
k=1

[λk(0)ϕk(x)] = g(x),∀x ∈ I (11)

N∑
k=1

λk(t)[αϕk(x) + βϕ
′

k(x)] =

{
h1(t), if x = a
h2(t), if x = b,

(12)
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and

f(t) = E
′
(t)−

N∑
k=1

λk(t)
[
ϕ

′′

k(x0)
]

(13)

Taking tn+1 = t1 + n∆t for n = 1, 2, · · · ,M − 1, where t1 = 0 and tM = T , and
applying forward difference operator to time in equation (10) and (13) we get
respectively

N∑
k=1

[λk(tn+1)− λk(tn)]ϕk(x) =

N∑
k=1

△tλk(tn)
[
ϕ

′′

k(x)
]
+ E(tn+1)− E(tn)−

N∑
k=1

△tλk(tn)
[
ϕ

′′

k(x0)
]

(14)

and

fa(tn) =
E(tn+1)− E(tn)

△t
−

N∑
k=1

λk(tn)
[
ϕ

′′

k(x0)
]
for n = 1, 2, · · · ,M − 1. (15)

And using backward difference operator we have

fa(tM ) =
E(tM )− E(tM−1)

△t
−

N∑
k=1

λk(tM )
[
ϕ

′′

k(x0)
]
. (16)

The RBF coefficients λk(tn) can be obtained iteratively from (11),(12), and (14)
for k = 1, 2, · · · , N and n = 1, 2, · · · ,M − 1.

Thus, equation(14) can be written as

ua(x, tn+1) = ua(x, tn) +

N∑
k=1

△tλk(tn)
[
ϕ

′′

k(x)
]
+ E(tn+1)− E(tn))−

N∑
k=1

△tλk(tn)
[
ϕ

′′

k(x0)
]

(17)

The following notations have been used. rk = |x − xk| and r0,k = |(x0 − xk|,
where x is the collocation points.

Gaussian(GA)

ua(x, tn+1) = ua(x, tn) +
∑N

k=1 △tλk(tn)
[
−2ce−cr2k [1− 2cr2k]

]
+ E(tn+1)

−E(tn)−
∑N

k=1 △tλk(tn)
[
−2ce−cr20,k [1− 2cr20,k]

]
fa(tn) =

E(tn+1)− E(tn)

△t
−
∑N

k=1 λk(tn)
[
−2ce−cr20,k [1− 2cr20,k]

]
for

n = 1, 2, · · · ,M − 1.

fa(tM ) =
E(tM )− E(tM−1)

△t
−
∑N

k=1 λk(tM )
[
−2ce−cr20,k [1− 2cr20,k]

]
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Hardy Multiquadrics(HMQ)

ua(x, tn+1) = ua(x, tn) +
∑N

k=1 △tλk(tn)

[
c2

(r2k + c2)
3
2

]
+ E(tn+1)− E(tn)

−
∑N

k=1 △tλk(tn)

[
c2

(r20,k + c2)
3
2

]

fa(tn) =
E(tn+1)− E(tn)

△t
−
∑N

k=1 λk(tn)

[
c2

(r20,k + c2)
3
2

]
for

n = 1, 2, · · · ,M − 1.

fa(tM ) =
E(tM )− E(tM−1)

△t
−
∑N

k=1 λk(tM )

[
c2

(r20,k + c2)
3
2

]
Inverse Multiquadrics(IMQ)

ua(x, tn+1) = ua(x, tn) +
∑N

k=1 △tλk(tn)

[
2r2k − c2

(r2k + c2)
5
2

]
+ E(tn+1)− E(tn)

−
∑N

k=1 △tλk(tn)

[
2r20,k − c2

(r20,k + c2)
5
2

]

fa(tn) =
E(tn+1)− E(tn)

△t
−
∑N

k=1 λk(tn)

[
2r20,k − c2

(r20,k + c2)
5
2

]
for

n = 1, 2, · · · ,M − 1.

fa(tM ) =
E(tM )− E(tM−1)

△t
−
∑N

k=1 λk(tM )

[
2r20,k − c2

(r20,k + c2)
5
2

]

Effect of Noisy Data. Here, we discuss about the numerical solutions ua(x, t)
and fa(x, t) if there is error on additional condition(AC). To illustrate this we
introduce the error function E(t)χ(t), where χ(t) is a noisy parameter. In this
way equation (4) and (7) becomes respectively

u(x0, t) = E(t)[1 + χ(t)] and f(t) =
d

dt
[E(t)(1 + χ(t))]−

N∑
k=1

λk(t)ϕ
′′

k(x0).

It follows that

ua(x, tn+1) = ua(x, tn) +

N∑
k=1

△tλk(tn)
[
ϕ

′′

k(x)
]
+ E(tn+1)[1 + χ(tn+1)]

−E(tn)[1 + χ(tn)]−
N∑

k=1

△tλk(tn)
[
ϕ

′′

k(x0)
]

fa(tn) =
1

∆t
[E(tn+1)(1 + χ(tn+1))− E(tn)(1 + χ(tn))]−
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N∑
k=1

λk(tn)ϕk(x0) for n = 1, 2, · · · ,M − 1.

and

fa(tM ) =
1

∆t
[E(tM )(1 + χ(tM ))− E(tM−1)(1 + χ(tM−1))]−

N∑
k=1

λk(tM )ϕk(x0).

Gaussian(GA)

ua(x, tn+1) = ua(x, tn) +
∑N

k=1 △tλk(tn)
[
−2ce−cr2k [1− 2cr2k]

]
+

E(tn+1)(1 + χ(tn+1))− E(tn)(1 + χ(tn))−∑N
k=1 △tλk(tn)

[
−2ce−cr20,k [1− 2cr20,k]

]
.

fa(tn) =
1

∆t
[E(tn+1)(1 + χ(tn+1))− E(tn)(1 + χ(tn))]−∑N

k=1 λk(tn)
[
−2ce−cr20,k [1− 2cr20,k]

]
for n = 1, 2, · · · ,M − 1.

fa(tM ) =
1

∆t
[E(tM )(1 + χ(tM ))− E(tM−1)(1 + χ(tM−1))]−∑N

k=1 λk(tM )
[
−2ce−cr20,k [1− 2cr20,k]

]
Hardy Multiquadrics(HMQ)

ua(x, tn+1) = ua(x, tn) +
∑N

k=1 △tλk(tn)

[
c2

(r2k + c2)
3
2

]
+

E(tn+1)(1 + χ(tn+1))− E(tn)(1 + χ(tn))

−
∑N

k=1 △tλk(tn)

[
c2

(r20,k + c2)
3
2

]
.

fa(tn) =
1

∆t
[E(tn+1)(1 + χ(tn+1))− E(tn)(1 + χ(tn))]−∑N

k=1 λk(tn)

[
c2

(r20,k + c2)
3
2

]
for n = 1, 2, · · · ,M − 1.

fa(tM ) =
1

∆t
[E(tM )(1 + χ(tM ))− E(tM−1)(1 + χ(tM−1))]−∑N

k=1 λk(tM )

[
c2

(r20,k + c2)
3
2

]
.
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Inverse Multiquadrics(IMQ)

ua(x, tn+1) = ua(x, tn) +
∑N

k=1 △tλk(tn)

[
2r2k − c2

(r2k + c2)
5
2

]
+

E(tn+1)(1 + χ(tn+1))− E(tn)(1 + χ(tn))−∑N
k=1 △tλk(tn)

[
2r20,k − c2

(r20,k + c2)
5
2

]
.

fa(tn) =
1

∆t
[E(tn+1)(1 + χ(tn+1))− E(tn)(1 + χ(tn))]

−
∑N

k=1 λk(tn)

[
2r20,k − c2

(r20,k + c2)
5
2

]
for n = 1, 2, · · · ,M − 1.

fa(tM ) =
1

∆t
[E(tM )(1 + χ(tM ))− E(tM−1)(1 + χ(tM−1))]

−
∑N

k=1 λk(tM )

[
2r20,k − c2

(r20,k + c2)
5
2

]
for n = 1, 2, · · · ,M − 1.

In order to illustrate the approximate effect, we define the root mean square
error(RMSE) and maximum absolute error(MAE) for u(x, t) and f(t) as follows.

RMSE(u) =

[
1

MN

∑M
i=1

∑N
k=1[u(xk, ti)− ua(xk, ti)]

2

] 1
2

,

RMSE(f) =

[
1

M

∑M
i=1[f(ti)− fa(ti)]

2

] 1
2

,

MAE(u) = max {|u(xk, ti)− ua(xk, ti)| : 1 ≤ i ≤ M and 1 ≤ k ≤ N} ,
MAE(f) = max {|f(ti)− fa(ti)| : 1 ≤ i ≤ M} .

3. Homotopy Perturbation Method(HPM)

Consider the linear differential equation

A(u(x, t)) = f(t), x ∈ I and t ∈ [0, T ] (18)

with boundary condition

B

(
u(x, t),

∂u(x, t)

∂n

)
= 0, x ∈ ∂I and t ∈ [0, T ], (19)

where A is a general differential operator, B is a boundary operator, n is the
outward unit vector at x, f(t) is obtained from additional condition. Let L1 and
L2 be two linear operators such that A = L1 + L2. We write equation (18) as

L1(u(x, t)) + L2(u(x, t)) = f(t). (20)

By a homotopy technique, we construct a homotopy defined as

H(v(x, t), p) : R× [0, 1] → R

which satisfies

H(v(x, t), p) = (1−p)[L1(v(x, t))−L1(u0(x, t))]+p[(A(v(x, t))−f(t)] = 0, (21)
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where u0(x, t) is the initial approximation of equation (20) which satisfies the
boundary conditions equation (19). Hence, obviously we have

H(v(x, t), 0) = L1(v(x, t))− L1(u0(x, t)) (22)

H(v(x, t), 1) = A(v(x, t))− f(t) (23)

and the changing process of p from 0 to 1 is the same as changing H(v(x, t), p)
from L1(v(x, t))−L1(u0(x, t)) to A(v(x, t))− f(t). If, the embedding parameter
p; (0 ≤ p ≤ 1) is considered as a ”small parameter”, applying the classical
perturbation technique, we can assume that the solution of equation (23) can be
given as a power series in p, i.e.,

v = v0 + pv1 + p2v2 + p3v3 + · · · . (24)

and setting p = 1 results in the approximate solution of equation (24) as;

u = lim
p→1

v = v0 + v1 + v2 + v3 + · · · . (25)

For solving equation (1) together with equations (2), (3) and (4), we construct
the Homotopy as follows:

∂u

∂t
− ∂u0

∂t
= p

[
∂2u

∂x2
+ f(t)− ∂u0

∂t

]
(26)

and from equation (24) the series solution is

u = v0 + v1 + v2 + v3 + · · · . (27)

In order to compute v0, v1, v2, · · · , substitute (27) into (26) we get

p0 :
∂v0
∂t

− ∂u0

∂t
= 0, v0(x, 0) = u(x, 0)

p1 :
∂v1
∂t

= −∂u0

∂t
+

∂2u0

∂x2
+ E

′
(t)− ∂2v0(x0, t)

∂x2
, v1(x, 0) = 0

p2 :
∂v2
∂t

=
∂2v1
∂x2

− ∂2v1(x0, t)

∂x2
, v2(x, 0) = 0

p3 :
∂v3
∂t

=
∂2v2
∂x2

− ∂2v2(x0, t)

∂x2
, v3(x, 0) = 0

...
...

...


(28)

4. Applications of Meshless and Homotopy Perturbation Method

Example 4.1. Consider the equation

ut = uxx + f(t), 0 < t ≤ 2 and 0 < x < 2
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with conditions

u(x, 0) = 2 + cosx,
∂u(x, t)

∂x

∣∣∣∣
x=0

= 0,
∂u(x, t)

∂x

∣∣∣∣
x=2

= −e−t sin 2,

u(1, t) = (2 + t+ cos 1)e−t.

We now use Homotopy perturbation method to obtain exact solution. So,
here x0 = 1 and E(t) = (2 + t+ cos 1)e−t. Using (28), we obtain

v0(x, t) = 2 + cosx,
v1(x, t) = −t cosx+ 2e−t + te−t + e−t cos 1 + t cos 1− cos 1− 2,

v2(x, t) = t2

2 cosx− t2

2 cos 1, · · · .
We observe that

u = v0 + v1 + v2 + v3 + · · ·
=

(
1− t+ t2

2! −
t3

3! − · · ·
)
cosx+

(
e−t −

[
1− t+ t2

2! −
t3

3! − · · ·
])

cos 1

+2e−t + te−t

= (2 + t+ cosx)e−t.

So, the exact solutions are u(x, t) = (2 + t+ cosx)e−t and f(t) = −(1 + t)e−t.
Figure (2) describes numerical(with no noisy data) and exact solution of u at
x = 0, 0.5, 1, 1.5, 2 for ∆t = 0.001. Figure (3) shows numerical(with no noisy
data) and exact solution of f for ∆t = 0.001. Figure(4) represents numerical(with
no noisy data) and exact solutions of u with ∆x = 0.5 and ∆t = 0.001. Table
(3) describes RMSE and MAE for χ(t) = 0, 0.01, 0.01(t− 1) at ∆t = 0.001.

Figure 2. Numerical(χ(t) = 0) and exact solutions of u with
∆x = 0.5 and ∆t = 0.001
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Figure 3. Numerical(χ(t) = 0) and exact solutions of f with
∆x = 0.5 and ∆t = 0.001

Figure 4. Numerical(χ(t) = 0) and exact solutions of u with
∆x = 0.5 and ∆t = 0.001



Inverse Heat Conduction Problem 687

Table 3. Numerical errors for △t = 0.001

χ(t) = 0 χ(t) = 0.01 χ(t) = 0.01(t− 1)

GA:RMSE(u) 1.9991× 10−3 1.3921× 10−2 2.2933× 10−2

GA:MAE(u) 6.2926× 10−3 2.5534× 10−2 3.1596× 10−2

GA:RMSE(f) 1.2795× 10−4 1.022× 10−2 1.9400× 10−2

GA:MAE(f) 4.2184× 10−4 1.4986× 10−2 4.1420× 10−2

HMQ:RMSE(u) 3.8838× 10−3 1.5346× 10−2 2.1908× 10−2

HMQ:MAE(u) 1.1226× 10−2 3.0488× 10−2 3.1613× 10−2

HMQ:RMSE(f) 5.0319× 10−4 1.0584× 10−2 1.9056× 10−2

HMQ:MAE(f) 8.8240× 10−4 1.5210× 10−2 4.1420× 10−2

IMQ:RMSE(u) 3.1941× 10−3 1.4799× 10−2 2.2287× 10−2

IMQ:MAE(u) 9.5576× 10−3 2.8813× 10−2 3.1613× 10−2

IMQ:RMSE(f) 3.5736× 10−4 1.0443× 10−2 1.9186× 10−2

IMQ:MAE(f) 6.3691× 10−4 1.5079× 10−2 4.1340× 10−2

Example 4.2. Consider the equation

ut = uxx + f(t), 0 < t ≤ 2 and 0 < x < 2

with conditions

u(x, 0) = x2,
∂u(x, t)

∂x

∣∣∣∣
x=0

+ u(0, t) = 2t+ sin(πt),

∂u(x, t)

∂x

∣∣∣∣
x=2

+ u(2, t) = 8 + 2t+ sin(πt), u(1, t) = 1 + 2t+ sin(πt).

We now use Homotopy perturbation method to obtain exact solution. So,
here x0 = 1 and E(t) = 1 + 2t+ sinπt. Using (28), we obtain

v0(x, t) = x2,
v1(x, t) = 2t+ sinπt,
v2(x, t) = 0, v3(x, t) = 0, · · · .
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We observe that
u = v0 + v1 + v2 + v3 + · · ·

= x2 + 2t+ sinπt.

So, the exact solutions are u(x, t) = x2 + 2t + sin(πt) and f(t) = π cos(πt).
Figure (5) describes numerical(with no noisy data) and exact solution of u at
x = 0, 0.5, 1, 1.5, 2 for ∆t = 0.001. Figure (6) shows numerical(with no noisy
data) and exact solution of f for ∆t = 0.001. Figure(7) represents numerical(with
no noisy data) and exact solutions of u with ∆x = 0.5 and ∆t = 0.001.Table (4)
describes RMSE and MAE for χ(t) = 0, 0.01, 0.01(t− 1) at ∆t = 0.001.

Figure 5. Numerical(χ(t) = 0) and exact solutions of u with
∆x = 0.5 and ∆t = 0.001

Figure 6. Numerical(χ(t) = 0) and exact solutions of u with
∆x = 0.5 and ∆t = 0.001



Inverse Heat Conduction Problem 689

Figure 7. Numerical(χ(t) = 0) and exact solutions of u with
∆x = 0.5 and ∆t = 0.001

Table 4. Numerical errors for △t = 0.001

χ(t) = 0 χ(t) = 0.01 χ(t) = 0.01(t− 1)

GA:RMSE(u) 1.2545× 10−3 3.2332× 10−2 2.8390× 10−2

GA:MAE(u) 4.9342× 10−3 1.0302× 10−1 1.2596× 10−1

GA:RMSE(f) 3.5418× 10−3 2.5864× 10−2 3.3452× 10−2

GA:MAE(f) 5.0226× 10−3 5.1441× 10−2 5.8321× 10−2

HMQ:RMSE(u) 3.4693× 10−3 3.1143× 10−2 2.7336× 10−2

HMQ:MAE(u) 1.3090× 10−2 9.6997× 10−2 1.2021× 10−1

HMQ:RMSE(f) 3.5307× 10−3 2.6052× 10−2 3.2845× 10−2

HMQ:MAE(f) 5.4849× 10−3 5.1550× 10−2 5.8321× 10−2

IMQ:RMSE(u) 2.6013× 10−3 3.1694× 10−2 2.7794× 10−2

IMQ:MAE(u) 1.0078× 10−2 9.9957× 10−2 1.2304× 10−1

IMQ:RMSE(f) 3.5350× 10−3 2.5953× 10−2 3.3149× 10−2

IMQ:MAE(f) 5.2470× 10−3 5.1502× 10−2 5.8916× 10−2

5. Conclusion

Meshless and Homotopy perturbation method are successfully applied to com-
pute the solution of inverse heat conduction problem. Meshless method which is
based on radial basis functions GA,HMQ and IMQ provides numerical solution
where as Homotopy perturbation method gives exact solution. Two examples
have been considered, and for each example several computations are carried
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out, namely u, f , RMSE and MAE. GA, HMQ and IMQ best approximates
exact solutions with no noisy data. If the data is noisy, the result is worse.
However, the noisy parameter close to zero for t ∈ [0, T ], the result close to the
exact solution. Finally, we suggest that the problem can be extended to higher
dimensions with different boundary conditions.

6. Abbreviations

IC = Initial condition IMQ = Inverse multiquadratics
BC = Boundary condition HPM = Homotopy Perturbation Method
AC = Additional condition PDE = Partial differential equation
RBF = Radial basis function RMSE = Root mean square error
GA = Gaussian MAE = Maximum absolute error
HMQ = Hardy multiquadratics
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