• Title/Summary/Keyword: Natural Frequency Parameter

Search Result 326, Processing Time 0.031 seconds

Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.31-52
    • /
    • 2020
  • This paper investigates the size dependent effect on the vibration analysis of a porous nanocomposite viscoelastic plate reinforced by functionally graded-single walled carbon nanotubes (FG-SWCNTs) by considering nonlocal strain gradient theory. Therefore, using energy method and Hamilton's principle, the equations of motion are derived. In this article, the effects of nonlocal parameter, aspect ratio, strain gradient parameter, volume fraction of carbon nanotubes (CNTs), damping coefficient, porosity coefficient, and temperature change on the natural frequency are perused. The innovation of this paper is to compare the effectiveness of each mentioned parameters individually on the free vibrations of this plate and to represent the appropriate value for each parameter to achieve an ideal nanocomposite plate that minimizes vibration. The results are verified with those referenced in the paper. The results illustrate that the effect of damping coefficient on the increase of natural frequency is significantly higher than the other parameters effect, and the effects of the strain gradient parameter and nonlocal parameter on the natural frequency increase are less than damping coefficient effect, respectively. Furthermore, the results indicate that the natural frequency decreases with a rise in the nonlocal parameter, aspect ratio and temperature change. Also, the natural frequency increases with a rise in the strain gradient parameter and CNTs volume fraction. This study can be used for optimizing the industrial and medical designs, such as automotive industry, aerospace engineering and water purification system, by considering ideal properties for the nanocomposite plate.

Comparison of Fragility Using Natural Frequency and Damping Parameter in System (고유주파수와 감쇠비에 대한 시스템 손상도 비교)

  • Lee, Seok-Min;Jung, Beom-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.48-55
    • /
    • 2018
  • The purpose of the present study is to compare the reduction rate of natural frequency and the increase rate of damping parameter with structural damage in system. For this purpose, experiment and numerical simulation analysis are performed for the 2-span H-Beam with lower natural frequency and higher damping parameter from free vibration in structure. The response signal by impact load before and after damage is analyzed at 14 locations. The response signals for all locations are performed fast fourier transform to estimate the natural frequency reduction rate and wavelet transform to estimate the damping parameter increase rate. The time domain function corresponding to each scale(frequency) is separated from the response signal by wavelet parameter. The estimation of damping parameter increase rate using wavelet transform is more sensitive than the estimation of natural frequency reduction rate in structure.

Model Updating Using the Closed-loop Natural Frequency (폐루프 공진 주파수를 이용한 모델 개선법)

  • Jung Hunsang;Park Youngjin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.801-810
    • /
    • 2004
  • Parameter modification of a linear finite element model(FEM) based on modal sensitivity matrix is usually performed through an effort to match FEM modal data to experimental ones. However, there are cases where this method can't be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to overcome the problems associated with the conventional method based on modal sensitivity matrix. We proposed the whole procedure of parameter modification using the closed-loop natural frequency data including the modal sensitivity modification and controller design method. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter estimation based on time-domain input/output data is provided to demonstrate the estimation performance of the proposed method.

Structural Dynamic System Reconstruction for Modal Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.150-150
    • /
    • 2000
  • We as modal parameter estimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of multivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre- and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios on be estimated using tile coordinates of the structural system reconstructed fro the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting.

  • PDF

Structural Dynamic System Reconstruction for Model Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.527-527
    • /
    • 2000
  • Wean modal parameter estiimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of mllltivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the coordinates of the structural system reconstructed from the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting..

  • PDF

A study on characteristics according to the parameter variation for hybrid shaft design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Dong-Pyo;Kim, Hyun-Sik;Hong, Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.99-104
    • /
    • 2008
  • The Carbon fiber epoxy composite material and aluminum have many advantages about higher specific stiffness and good fatigue characteristics. basically, the propeller shaft of automobile must satisfy high natural frequency more than 9,200 rpm to satisfy high number of rotation and high torsion torque more than 2,700Nm. In these reason, studied natural frequency and torsion torque characteristics of shaft according to parameter variations with the outdiameter and thickness. From the torsion tester and natural frequency experiments FE analyses was compared vibration and torque characteristics of hybrid shaft Designed hybrid shaft was experimented through FFT analyzer and torsion tester each and satisfied that hybrid shaft reverence 60mm and thickness 5mm by a these experiment is most suitable. Therefore, that can manufacture existent steel two piece type propeller shaft to one piece type hybrid shaft.

  • PDF

A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Yong;Kim, Hyun-Sik;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

Estimation of System Damping Parameter Using Wavelet Transform (웨이블릿 변환에 의한 시스템 감쇠변수 평가)

  • Lee, Seok-Min;Jung, Beom-Seok;Hong, Seok-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.30-37
    • /
    • 2015
  • The estimation of system damping parameter of the response signal with lower natural frequency and higher damping parameter from free vibration is affected by the wavelet center frequency. This study discusses these considerations in the context of the wavelet's multi-resolution character and includes guidelines for selection of wavelet center frequency. The experiment with H-Beam and numerical examples with respect to three cases (i)single mode, (ii)separated modes and (iii)close modes demonstrate the validity of method to improve the accuracy of the estimated damping parameter. The localization of the corresponding scale for the total scales is determined by the natural frequency of the analysing mode and is affected by the wavelet center frequency. Thus, the reliability for the accuracy of the estimated damping parameter can be improved by the corresponding scale of the natural frequency for the analysing mode is localized at the half of the total scales.

Natural Frequency Analysis of Arch by Galerkin's Method (갤러킨법을 이용한 아치의 고유진동해석)

  • Jung, Chan-Woo;Seok, Keun-Yung;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.4
    • /
    • pp.55-61
    • /
    • 2007
  • Recently, with the development of computer, FEM has became the most frequently used numerical analysis method. FEM shows great ability in structures analysis, however, Galerkin's Method is more useful in grasping influence or the tendency of parameter which forms the structure. This paper perform the eigenvalue analysis using Galerkin's Method which is advantageous in grasping the influence and the tendency of parameter which forms the structure and study on the influence of parameter that forms arch on natural frequency response.

  • PDF

Vibration Analysis of Tapered Thick Plate with Concentrated Mass Subjected to In-plane Force on Elastic Foundation (탄성지반을 고려한 집중질량뜰 갖고 면내력이 작용하는 변단면 보강후판의 진동해석)

  • Lee, Yong-Soo;Kim, Il-Jung;Oh, Soog-Kyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1033-1041
    • /
    • 2008
  • The purpose of this paper is to investigate natural frequencies of tapered thick plate with concentrated masses subjected to in-plane force on pasternak foundation by means of finite element method and providing kinetic design data for mat of building structures. Finite element analysis of rectangular plate is done by using rectangular finite element with 8-nodes. For analysis, plates is supported on pasternak foundation. The Winkler parameter is varied with 10, 102, the shear foundation parameter is 5. The taper ratio is applied as 0.0, 0.25, 0.5 and the ratio of the concentrated mass to plate mass as 0.25, 0.5 respectively. As results, we can see that when stiffener's sizes or foundation parameter are larger, the natural frequency increases, and when the concentrated mass or taper ratio or in-plane stress is larger, the natural frequency decreases.