• Title/Summary/Keyword: Nanostructured Metal

Search Result 89, Processing Time 0.022 seconds

Simple fabrication process and characteristic of a screen-printed triode-CNT field emission arrays for the flat lamp application

  • Jung, Y.J.;Park, J.H.;Jeon, S.Y.;Park, S.J.;Alegaonkar, P.S.;Yoo, J.B.;Park, C.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1214-1218
    • /
    • 2006
  • We introduced simple fabrication process for field emission devices based on carbon nanotubes (CNTs) emitters. Instead of using the ITO material as a transparent electrode, a metal (Au) with thickness of 5-20nm was used. Moreover, the ITO patterning process was eliminated by depositing metal layer, before the CNT printing process. In addition, the thin metal layer on photo resist (PR) layer was used as UV block. We fabricated the CNT field emission arrays of triode structure with simple process. And I-V characteristics of field emission arrays were measured. The maximum current density of $254{\mu}A/cm2$ was achieved when the gate and the anode voltage was kept 150V and 3000V, respectively. The distance between anode and cathode was kept constant.

  • PDF

Laser-Direct Patterning of Nanostructured Metal Thin Films (나노구조 금속 박막의 레이저 직접 패터닝에 관한 연구)

  • Shin, Hyunkwon;Lee, Hyeongjae;Yoo, Hyeonggeun;Lim, Ki-Soo;Lee, Myeongkyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.163-168
    • /
    • 2010
  • We here describe the laser-direct patterning of nanostructured metal thin films. This method involves light-matter interaction in which a pulsed laser beam impinging on the film generates a thermoelastic force that plays a role to detach the film from the substrate or underlying layers. A moderate cohesion of the nanostructured film enables localized desorption of the material upon irradiation by a spatiallymodulated laser beam, giving good fidelity with the transfered pattern. This photoresist-free process provides a simple high-resolution scheme for patterning metal thin films.

Optoacoustic Ultrasound Generator Based on Nanostructured Germanium (광음향효과를 이용한 게르마늄 나노구조 기반의 초음파 발생 소자 연구)

  • Yoon, Sang-Hyuk;Heo, Junseok
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.5
    • /
    • pp.255-260
    • /
    • 2015
  • We have fabricated an optoacoustic ultrasound generator based on nanostructured germanium (Ge). Ge thin films were deposited via e-beam evaporation and then etched using a metal-assisted chemical (MAC) method to form nanostructured Ge films. The measured intensity of ultrasound from the nanostructured Ge covered with PDMS was about 3 times stronger than that of 100-nm-thick chromium (Cr). When the nanostructured Ge was embedded in the PDMS, the intensity of ultrasound became 8.5 times as strong compared to the 100-nm-thick Cr.

Advances in the Technology of Solid State Hydrogen Storage Methods Using Novel Nanostructured Materials (나노구조물질을 이용한 고체수소저장 기술 동향)

  • Zacharia, Renju;Kim, Keun Young;Nahm, Kee Suk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.439-451
    • /
    • 2005
  • This article provides a panoramic overview of the state-of-the-art technologies in the field of solid-state hydrogen storage methods. The emerging solid-state hydrogen storage techniques, such as nanostructured carbon materials, metal organic framework (MOFs), metal and inter-metal hydrides, clathrate hydrates, complex chemical hydride are discussed. The hydrogen storage capacity of the solid-sate hydrogen storage materials increases in proportion to the surface area of the solid materials. Also, it is believed that new functional nanostructured materials will offer far-reaching solutions to the development of on-board hydrogen storage system for the application of the transportation vehicles.

Fabrication and Properties of Under Gate Field Emitter Array for Back Light Unit in LCD

  • Jung, Yong-Jun;Park, Jae-Hong;Jeong, Jin-Soo;Nam, Joong-Woo;Berdinsky, Alexander S.;Yoo, Ji-Beom;Park, Chong-Yun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1530-1533
    • /
    • 2005
  • We investigated under-gate type carbon nanotube field emitter arrays (FEAs) for back light unit (BLU) in liquid crystal display (LCD). Gate oxide was formed by wet etching of ITO coated glass substrate instead of depositing $SiO_2$ on the glass substrate. Wet etching is easer and simpler than depositing and etching of thick gate oxide to isolate the gate metal from cathode electrode in triode. Field emission characteristic s of triode structure were measured. The maximum current density of 92.5 ${\mu}A/cm^2$ was when the gate and anode voltage was 95 and 2500 V, respectively at the anode-cathode spacing of 1500 ${\mu}m$.

  • PDF

Development of Membrane Filter with Nanostructured Porous Layer by Coating Metal Nanoparticles onto a Micor-Filter (마이크로-필터 상에 금속 나노입자 코팅에 의한 나노구조 기공층 멤브레인 필터 개발)

  • Lee, Dong Geun;Park, Seok Joo;Park, Young Ok;Ryu, Jeong In
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.591-595
    • /
    • 2007
  • The membrane filter coated with nanostructured porous surface layer was made by heat treatment after depositing nanoparticles onto a conventional micron-fibrous metal filter as a substrate filter. The nanostructured porous layer membrane filter (NSPL-MF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by coating the nanoparticle agglomerates of dendrite structure onto the micron-fibrous metal filter. Pressure drop of nanostructured porous layer membrane filter decreased with increasing the heat treatment temperature to make the nanostructured porous layer adhered on the filter surface because the nanoparticle agglomerates shrank, but filtration efficiency did not decrease clearly.

Development of Membrane Filters with Nanostructured Porous Layer by Coating of Metal Nanoparticles Sintered onto a Micro-Filter (마이크로-필터 상에 소결 처리된 금속 나노입자 코팅에 의한 나노구조 기공층 멤브레인 필터 개발)

  • Lee, Dong-Geun;Park, Seok-Joo;Park, Young-Ok;Ryu, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.617-623
    • /
    • 2008
  • The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 kPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%.

How to Improve the Ductility of Nanostructured Materials

  • Eckert J.;Duhamel C.;Das J.;Scudino S.;Zhang Z. F.;Kim, K. B.
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.340-350
    • /
    • 2006
  • Nanostructured materials exhibit attractive mechanical properties that are often superior to the performance of their coarse-grained counterparts. However, one major drawback is their low ductility, which limits their potential applications. In this paper, different strategies to obtain both high strength and enhanced ductility in nanostructured materials are reported for Ti-base and Zr-base alloys. The first approach consists of designing an in-situ composite microstructure containing ductile bcc or hop dendrites that are homogeneously dispersed in a nanostructured matrix. The second approach is related to refining the eutectic structure of a Ti-Fe-Sn alloy. For all these materials, the microstructure, mechanical properties, deformation and fracture mechanisms will be discussed.

The Use of Pistachio Pollen for the Production of Nanostructured Porous Nickel Oxide

  • Atalay, F.E.;Yigit, E.;Biber, Z.S.;Kaya, H.
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850143.1-1850143.9
    • /
    • 2018
  • Natural biotemplates - such as bacteria, fungi and viruses - are used in nanostructured metal oxide production. The pollen can be found abundantly in nature, and their microcapsules can be easily isolated from the pollen by chemical treatments. To date, pollen microcapsules are mostly used as drug carriers and catalytic agent templates. In the present study, nanoporous-structured nickel oxide is produced using Pistachio pollen microcapsules. The raw pollen, chemically treated pollen and metal-coated pollen were characterized using scanning electron microscopy, Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. The natural Pistachio pollen which were procured from Gaziantep, Turkey, are spherical, with a diameter of approximately $23{\mu}m$. The maximum surface area obtained for nickel oxide-coated microcapsules is $228.82m^2/g$. This result shows that Pistachio pollen are an excellent candidate for the production of porous nanostructured materials for supercapacitor electrodes.