Browse > Article
http://dx.doi.org/10.3807/KJOP.2015.26.5.255

Optoacoustic Ultrasound Generator Based on Nanostructured Germanium  

Yoon, Sang-Hyuk (Department of Electronics and Computer Engineering, Ajou University)
Heo, Junseok (Department of Electronics and Computer Engineering, Ajou University)
Publication Information
Korean Journal of Optics and Photonics / v.26, no.5, 2015 , pp. 255-260 More about this Journal
Abstract
We have fabricated an optoacoustic ultrasound generator based on nanostructured germanium (Ge). Ge thin films were deposited via e-beam evaporation and then etched using a metal-assisted chemical (MAC) method to form nanostructured Ge films. The measured intensity of ultrasound from the nanostructured Ge covered with PDMS was about 3 times stronger than that of 100-nm-thick chromium (Cr). When the nanostructured Ge was embedded in the PDMS, the intensity of ultrasound became 8.5 times as strong compared to the 100-nm-thick Cr.
Keywords
Ultrasound; Optoacoustic effect; Germanium; Metal-assisted chemical etching; Nanostructure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. de la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, "Carbon nanotubes as photoacoustic molecular imaging agents in living mice," Nat. Nanotechnol. 3, 557-562 (2008).   DOI   ScienceOn
2 H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, "Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation," Appl. Phys. Lett. 97, 234104 (2010).   DOI
3 R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, "Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings," Appl. Phys. Lett. 104, 173502 (2014).   DOI
4 E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, USA, 1985).
5 R. R. Reeber and K. Wang, "Thermal expansion and lattice parameters of group IV semiconductors," Mater. Chem. Phys. 46, 259-264 (1996).   DOI
6 T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, "Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning," Nanoscale Res. Lett. 8, 151 (2013).   DOI
7 N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, "The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer," Appl. Phys. Lett. 75, 2557-2559 (1999).   DOI
8 W. M. Haynes, CRC Handbook of Chemistry and Physics, 96th ed. (CRC Press, 2015).
9 M. Riccabona, T. R. Nelson, and D. H. Pretorius, "Three-dimensional ultrasound: accuracy of distance and volume measurements," Ultrasound Obstet. Gynecol. 7, 429-434 (1996).   DOI
10 D. S. Kopylova, I. M. Pelivanov, N. B. Podymova, and A. A. Karabutov, "Thickness measurement for submicron metallic coatings on a transparent substrate by laser optoacoustic technique," Acoustical Physics 54, 783-790 (2008).   DOI
11 S.-Y. Nam and S. Y. Emelianov, "Array-based real-time ultrasound and photoacoustic ocular imaging," J. Opt. Soc. Korea 18, 151-155 (2014).   DOI
12 R. J. von Gutfeld and H. F. Budd, "Laser-generated MHz elastic waves from metallic-liquid interfaces," Appl. Phys. Lett. 34, 617 (1979).   DOI
13 Y. Hou, J.-S. Kim, S. Ashkenazi, M. O'Donnell, and L. J. Guo, "Optical generation of high frequency ultrasound using two-dimensional gold nanostructure," Appl. Phys. Lett. 89, 093901 (2006).   DOI
14 T. Buma, M. Spisar, and M. O'Donnell, "High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film," Appl. Phys. Lett. 79, 548-550 (2001).   DOI
15 J. K. Tsou, J. Liu, A. I. Barakat, and M. F. Insana, "Role of ultrasonic shear rate estimation errors in assessing inflammatory response and vascular risk," Ultrasound in Med. and Biol. 34, 963-972 (2008).   DOI