Browse > Article
http://dx.doi.org/10.3365.KJMM.2010.48.02.163

Laser-Direct Patterning of Nanostructured Metal Thin Films  

Shin, Hyunkwon (Department of Materials Science and Engineering, Yonsei University)
Lee, Hyeongjae (Department of Materials Science and Engineering, Yonsei University)
Yoo, Hyeonggeun (Department of Materials Science and Engineering, Yonsei University)
Lim, Ki-Soo (Department of Physics, Chungbuk University)
Lee, Myeongkyu (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.2, 2010 , pp. 163-168 More about this Journal
Abstract
We here describe the laser-direct patterning of nanostructured metal thin films. This method involves light-matter interaction in which a pulsed laser beam impinging on the film generates a thermoelastic force that plays a role to detach the film from the substrate or underlying layers. A moderate cohesion of the nanostructured film enables localized desorption of the material upon irradiation by a spatiallymodulated laser beam, giving good fidelity with the transfered pattern. This photoresist-free process provides a simple high-resolution scheme for patterning metal thin films.
Keywords
thin films; metals; nanostructured materials; scanning electron microscopy; microstructurds;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 B. Ridley, B. Nivi, and J. M. Jacobson, Science 286, 746 (1999)   DOI   PUBMED   ScienceOn
2 N. Stutzmann, R. H. Friend, and H. Sirringhaus, Science 299, 1881 (2003)   DOI   PUBMED   ScienceOn
3 J. Park, Matt Hardy, S. Kang, K. Barton, K. Adair, Deep kishore Mukhopadhyay, C. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, Nature Mater. 6, 782 (2007)   DOI   ScienceOn
4 Y. Loo, R. Willett, K. Baldwin, and J. A. Rogers, J. Am. Chem. Soc. 124, 7654 (2002)   DOI   ScienceOn
5 J. Bohandy, B. F. Kim, and F. J. Andrian, J. Appl. Phys. 60, 1538 (1986)   DOI
6 J. Bohandy, B. F. Kim, F. J. Andrian, and A. N. Jette, J. Appl. Phys. 63, 1158 (1988)   DOI
7 D. A. Willis and V. Grosu, Appl. Phys. Lett. 86, 244103 (2005)   DOI   ScienceOn
8 M. Arronte, P. Neves, and R. Vilar, J. Appl. Phys. 92, 6973 (2002)   DOI   ScienceOn
9 J. Lee, C. Curran, and K. Watkins, Appl. Phys. A 73, 219 (2001)   DOI   ScienceOn
10 H. Shin, H. Kim, H. Lee, H. Yoo, J. Kim, H. Kim, and M. Lee, Adv. Mater. 20, 3457 (2008)   DOI   ScienceOn
11 Y. Loo, D. V. Lang, J. A. Rogers, and J. W. Hsu, Nano Lett. 3, 913 (2003)   DOI   ScienceOn
12 J. Wang, Z. Zheng, H. Li, W. Huck, and H. Sirringhaus, Nature Mater. 3, 171 (2004)   DOI   ScienceOn
13 I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, Appl. Phys. A 66, 579 (1998)   DOI   ScienceOn
14 M. M. Ling and Z. Bao, Chem. Mater. 16, 4824 (2004)   DOI   ScienceOn
15 G. Vereecke, E. Rohr, and M. Heyns, J. Appl. Phys. 85, 3837 (1999)   DOI   ScienceOn
16 H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science 290, 2123 (2000)   DOI   PUBMED   ScienceOn
17 P. Calvert, Chem. Mater. 13, 3299 (2001)   DOI   ScienceOn