DOI QR코드

DOI QR Code

Optoacoustic Ultrasound Generator Based on Nanostructured Germanium

광음향효과를 이용한 게르마늄 나노구조 기반의 초음파 발생 소자 연구

  • Yoon, Sang-Hyuk (Department of Electronics and Computer Engineering, Ajou University) ;
  • Heo, Junseok (Department of Electronics and Computer Engineering, Ajou University)
  • 윤상혁 (아주대학교 전자공학과) ;
  • 허준석 (아주대학교 전자공학과)
  • Received : 2015.07.29
  • Accepted : 2015.08.19
  • Published : 2015.10.25

Abstract

We have fabricated an optoacoustic ultrasound generator based on nanostructured germanium (Ge). Ge thin films were deposited via e-beam evaporation and then etched using a metal-assisted chemical (MAC) method to form nanostructured Ge films. The measured intensity of ultrasound from the nanostructured Ge covered with PDMS was about 3 times stronger than that of 100-nm-thick chromium (Cr). When the nanostructured Ge was embedded in the PDMS, the intensity of ultrasound became 8.5 times as strong compared to the 100-nm-thick Cr.

본 논문에서는 MAC(metal-assisted chemical) 에칭을 이용하여 Ge(Germanium) 표면에 나노구조를 형성하고, 그 위에 열팽창계수가 높은 PDMS를 적용하여 광음향효과를 이용한 초음파 발생 소자를 제작하였다. Ge 나노구조 위에 PDMS를 스핀 코팅하여 만든 초음파 발생 소자는 100 nm Cr(Chromium) 대비 약 3배의 초음파를 발생시켰다. 또한, Ge 나노구조를 PDMS 중앙에 위치시 킬 경우 쿼츠 기판을 통한 열손실이 줄어들어 100 nm Cr 대비 8.5배의 강한 초음파를 얻을 수 있었다.

Keywords

References

  1. M. Riccabona, T. R. Nelson, and D. H. Pretorius, "Three-dimensional ultrasound: accuracy of distance and volume measurements," Ultrasound Obstet. Gynecol. 7, 429-434 (1996). https://doi.org/10.1046/j.1469-0705.1996.07060429.x
  2. D. S. Kopylova, I. M. Pelivanov, N. B. Podymova, and A. A. Karabutov, "Thickness measurement for submicron metallic coatings on a transparent substrate by laser optoacoustic technique," Acoustical Physics 54, 783-790 (2008). https://doi.org/10.1134/S1063771008060067
  3. S.-Y. Nam and S. Y. Emelianov, "Array-based real-time ultrasound and photoacoustic ocular imaging," J. Opt. Soc. Korea 18, 151-155 (2014). https://doi.org/10.3807/JOSK.2014.18.2.151
  4. R. J. von Gutfeld and H. F. Budd, "Laser-generated MHz elastic waves from metallic-liquid interfaces," Appl. Phys. Lett. 34, 617 (1979). https://doi.org/10.1063/1.90637
  5. Y. Hou, J.-S. Kim, S. Ashkenazi, M. O'Donnell, and L. J. Guo, "Optical generation of high frequency ultrasound using two-dimensional gold nanostructure," Appl. Phys. Lett. 89, 093901 (2006). https://doi.org/10.1063/1.2344929
  6. T. Buma, M. Spisar, and M. O'Donnell, "High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film," Appl. Phys. Lett. 79, 548-550 (2001). https://doi.org/10.1063/1.1388027
  7. A. de la Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, "Carbon nanotubes as photoacoustic molecular imaging agents in living mice," Nat. Nanotechnol. 3, 557-562 (2008). https://doi.org/10.1038/nnano.2008.231
  8. H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, "Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation," Appl. Phys. Lett. 97, 234104 (2010). https://doi.org/10.1063/1.3522833
  9. R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, "Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings," Appl. Phys. Lett. 104, 173502 (2014). https://doi.org/10.1063/1.4873678
  10. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, USA, 1985).
  11. R. R. Reeber and K. Wang, "Thermal expansion and lattice parameters of group IV semiconductors," Mater. Chem. Phys. 46, 259-264 (1996). https://doi.org/10.1016/S0254-0584(96)01808-1
  12. T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, "Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning," Nanoscale Res. Lett. 8, 151 (2013). https://doi.org/10.1186/1556-276X-8-151
  13. N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, "The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer," Appl. Phys. Lett. 75, 2557-2559 (1999). https://doi.org/10.1063/1.125076
  14. W. M. Haynes, CRC Handbook of Chemistry and Physics, 96th ed. (CRC Press, 2015).
  15. J. K. Tsou, J. Liu, A. I. Barakat, and M. F. Insana, "Role of ultrasonic shear rate estimation errors in assessing inflammatory response and vascular risk," Ultrasound in Med. and Biol. 34, 963-972 (2008). https://doi.org/10.1016/j.ultrasmedbio.2007.11.010