• Title/Summary/Keyword: Nanostructure fabrication

검색결과 102건 처리시간 0.032초

반도체 나노구조를 이용한 SERS기반 바이오센싱 기술 (Surface Enhanced Raman Spectroscopy-based Bio Sensing Technology Using Semiconductor Nanostructures)

  • 유재수;이수현
    • 진공이야기
    • /
    • 제4권3호
    • /
    • pp.12-15
    • /
    • 2017
  • Surface enhanced Raman scattering (SERS) is considered as one of promising medical and diagnostic technologies. The SERS effect is caused by the localized surface plasmon resonance (LSPR) from metal nanoparticles with narrow hot spots. The mechanism of LSPR, development of nanostructure fabrication, and corresponding researches are discussed. The flexible, label-free, low-cost, and highly-sensitive Au/ZnONRs/G is introduced. The Au/ZnONRs/G detects and distinguishes cataract, age-related macular degeneration, and diabetic macular edema from aqueous humor. Comprehension of SERS provides further improvement in bio sensing technology including early diagnosis and prolonged life expectancy.realize highly stretchable electrodes.

Nanostructure Fabrication using Dip-pen Nanolithography

  • Lee, Seung-Woo;Mirkin Chad A.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.285-285
    • /
    • 2006
  • The ionic layer-by-layer (LBL) assembled films can be formed by sequentially dipping of substrates to oppositely charged polyions solution in the multilayer, called polyelectrolytes multilayer (PEM) films. Easy way of these assemblies of charged polymers offer the ability to adjust important parameters such as controllability of thickness in the nanometer-scale level and functionality of most top layer of PEM films. Nevertheless, we do not know of any trials to fabricate PEM organic films into nanometer size. Herein, we show the integration of the LBL technique with DPN in fabricating nanometer size patterns of multilayered polyelectrolyte structures. Through the use of single and multiple cantilever AFM probes, we demonstrate the parallel writing capabilities of DPN.

  • PDF

원자간력 현미경 탄소 나노튜브 팁을 이용한 플러렌 나노 구조물 제작에 관한 분자동역학 시뮬레이션 (Molecular Dynamics Simulations of Fullerene Nanostructure Fabrications by Atomic Force Microscope Carbon Nanotube tip)

  • 이준하;이홍주
    • 한국전기전자재료학회논문지
    • /
    • 제17권8호
    • /
    • pp.812-822
    • /
    • 2004
  • This paper shows that carbon nanotubes can be applied to a nanopipette. Nano space in atomic force microscope multi-wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic forces. Since the nano space inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications demonstrated the possibility of nano-lithography or single-metallofullerene-transistor array fabrication.

미세 핫엠보싱 공정에서 폴리머의 유동특성 (Flow Behaviors of Polymers in Micro Hot Embossing Process)

  • 반준호;신재구;김병희;김헌영
    • 한국정밀공학회지
    • /
    • 제22권8호
    • /
    • pp.159-164
    • /
    • 2005
  • The Hot Embossing Lithography(HEL) as a method fur the fabrication of the nanostructure with polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this paper, we carried out experimental studies and numerical simulations in order to understand the viscous flow of the polymer (PMMA) film during the hot embossing process. To grasp the characteristics of the micro patterning rheology by process parameters (embossing temperature, pressure and time), we have carried out various experiments by using the nickel-coated master fabricated by the deep RIE process and the plasma sputtering. During the hot embossing process, we have observed the characteristics of the viscoelastic behavior of polymer. Also, the viscous flow during the hot embossing process has been simulated by the continuum based FDM(Finite Difference Method) analysis considering the micro effect, such as a surface tension and a contact angle.

Preparation and Atomic Force Microscopy (AFM) Characterization of DNA Scaffolds as a Template for Protein Immobilization

  • Kim, Hyeran;Lee, Hyun Uk;Lee, Jouhahn
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.411.2-411.2
    • /
    • 2014
  • The design of DNA nanostructures is of fundamental importance, the intrinsic value of DNA as a building-block material lies in its ability to organize other bio-molecules with nanometer-scale spacing. Here, we report the fabrication of DNA scaffolds with nano-pores (<10 nm size) that formed easily without the use of additives (i.e., avidin, biotin, polyamine, or inorganic materials) into large-scale structures by assembling DNA molecules at near room temperature ($30^{\circ}C$) and low pH (~5.5). Protein immobilization results also confirmed that a fibronectin (FN) proteins/large scale DNA scaffolds/aminopropylytriethoxysilane (APS)/SiO2/Si substrate with high sensitivity formed in a well-defined manner. The DNA scaffolds can be applied for use with DNA-based biochips, biophysics, and cell biology.

  • PDF

DVD/Blu-ray 스템퍼를 이용한 핫엠보싱 특성 (Characteristics of Hot Embossing using DVD/Blu-ray Stamper)

  • 김병희;반준호;신재구;김헌영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.305-310
    • /
    • 2004
  • The Hot Embossing Lithography(HEL) as a method for the fabrication of nanostructure with polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this study, we investigated the characteristics of hot embossing lithography as a nanoreplication technique. To grasp characteristics of nano patterning rheology by process parameters(embossing temperature, pressure and time), we have carried out various experiments by using the DVD(400nm pattern width) and Blu-ray nickel stamps(150nm pattern width). During the hot embossing process, we have observed the characteristics of the size effect. The quality of products made by hot embossing is affected by its cooling shrinkage. The demolding process at the glass transition temperature results in low quality because of the shrinkage of the polymer. Therefore, the quantification of the temperature condition is essential for the replication of high quality.

  • PDF

One-step fabrication of a large area wire-grid polarizer by nanotransfer molding

  • Hwang, Jae-K.;Park, Kyung-S.;Sung, Myung-Mo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.464-464
    • /
    • 2011
  • We report a method to fabricate a large-area metal nanowire-grid polarizer. Liquid-bridge-mediated nanotransfer molding (LB-nTM) is based on the direct transfer of metal nanowires from a mold to a transparent substrate via liquid layer. A metal particle solution is used as an ink in the LB-nTM, which can be used for the formation of metal nanowires. The nanowires have higher depth are preferred for high transmittance. The height of nanowires that we made is about 140 nm. Large-area WGP is fabricated with good average transmittance of 74.89% in our measuring range.

  • PDF

용액기반 투명전극 분말 재료 연구 동향 (Research Trends in Powder Materials for Solution-based Transparent Conducting Electrode)

  • 구본율;안효진
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.153-163
    • /
    • 2017
  • Transparent conducting electrodes (TCEs) are attracting considerable attention as an important component for emerging optoelectronic applications such as liquid crystal displays, touch panels, and solar cells owing to their attractive combination of low resistivity (<$10^{-3}{\Omega}cm$) and high transparency (>80%) in the visible region. The solution-based process has unique properties of an easy fabrication procedure, scalability, and low cost compared to the conventional vacuum-based process and may prove to be a useful process for fabricating TCEs for future optoelectronic applications demanding large scale and flexibility. In this paper, we focus on the introduction of a solution-based process for TCEs. In addition, we consider the powder materials used to fabricate solution-based TCEs and strategies to improve their transparent conducting properties.

탄소 나노튜브를 활용한 나노 구조물에 대한 시뮬레이션 연구 (A Study of Nanostructure by Carbon Nanotube Simulation)

  • 이준하;이흥주;송영진;윤영식
    • 반도체디스플레이기술학회지
    • /
    • 제4권3호
    • /
    • pp.11-15
    • /
    • 2005
  • This paper shows that carbon nanotubes can be applied to a nanopipette. Nano space in atomic force microscope multi wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic farces. Since the nano space inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications demonstrated the possibility of nano-lithography or single-metallofullerene-transistor array fabrication.

  • PDF

레이저 간섭 리소그래피를 이용한 대면적 나노 구조체 제작 (Large Area Nanostructure Fabrication by Laser Interference Lithography)

  • 정일규;김종석;한재원;이성호
    • 반도체디스플레이기술학회지
    • /
    • 제11권1호
    • /
    • pp.7-11
    • /
    • 2012
  • One dimensional and two dimensional nano patterns were fabricated on a 4-inch substrate by Laser Interference Lithography (LIL). Mach-Zehnder interferometer was setup to obtain the interference patterns and adjusted the pattern sizes with change of incident angle. We could obtain a periodic structure with a period of 440 nm using 266 nm laser, and demonstrated a pattern size with $293{\pm}25nm$ over a 4-inch substrate.