• 제목/요약/키워드: Nanosize

검색결과 95건 처리시간 0.025초

탄탈륨 도핑 및 나노사이즈의 금입자분산된 $TiO_2$ 박막에서의 광전극 특성 비교 (Comparison of Photoelectrode Properties Between $TiO_2$ Thin films Doped with Tantalum and Dispersed with Nanosize Gold)

  • 윤종원;정경한;;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.861-864
    • /
    • 2004
  • 본 연구에서는 Ta이 도핑된 $TiO_2$$Au/TiO_2$ nanocomposite 박막을 co-sputtering법으로 제작하였다. Ta-doped $TiO_2$ 박막은 금흥석(rutile)에서 아나타제 상으로 변하는 구조를 유도하는 고용체를 형성했다. $Au/TiO_2$ nanocomposite film의 경우에는, 지름이 약 15 nm인 Au particles들이 $TiO_2$ matrix에 균질하게 분포되었다. Ta가 도핑된 $TiO_2$ 전극과 $Au/TiO_2$ 나노 콤포사이트 전극의 anodic photocurrents가 UV뿐만 아니라 가시광선 영역에서도 관찰되었다. Ta이 도핑된 $TiO_2$ 전극과 $Au/TiO_2$ 나노 콤포사이트 사이의 가시광선 영역에서 photoresponse는 계면 상태로 부터의 bandgap의 감소와 전자의 photoexcitation 때문이다.

  • PDF

Si 기판상에 도금된 구리 박막의 이방성 에칭 특성

  • 김상혁;박채민;문성재;이효종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.67.1-67.1
    • /
    • 2017
  • 구리는 탄성이방성이 큰 재료로 Si 박막상에 성장시키면 (111) 방향으로 우선 배향된 박막을 얻을 수 있다. 본 연구는 이러한 (111) 우선 방위를 갖는 Cu 박막의 전기도금층의 재결정 후의 매우 평탄한 표면을 갖는 박막에서 에칭에 따른 박막의 단차와 표면형상을 통해 결정방위별 에칭 특성을 비교 분석한 결과이다. 10 vol% 질산용액에서 에칭한 결과는 구리의 용해에 따라 각 결정면에 대한 고유의 facetted surface morphology를 나타내며, 대표적인 결정 방위인 (111), (110), (100)에 대해 triangular flake, ridge and rectangular pyramidal shapes을 나타내는 것을 알 수 있었다. 에칭속도의 정량적 측정을 위해 120초간 2.2M 농도의 질산용액으로 에칭을 실시하였고, nanosize의 as-plated initial region, (111), (110), (100) oriented regions의 각각에서 383, 270, 276, 317 nm/min의 에칭속도를 갖는 것을 확인하였다. Facet surface의 관찰을 통해 에칭반응이 (111) front surface를 갖는 열역학적 평형상태에서 일어나며, 이러한 결정방위별 에칭속도 차이는 각 결정S면이 갖는 Kink or ledge의 밀도의 차이에 기인할 것으로 판단된다. 즉, 에칭이 평형상태에서 step flow mechanism에 의해 열역학적 평형상태를 유지하면서 진행이 된다. 본 연구는 향후 다양한 에칭관련 용액 효과, 구리 박막의 응력 및 불순물에 의한 효과를 볼 수 있는 기본 방법을 제공해 줄 것으로 기대한다.

  • PDF

The Power of Being Small: Nanosized Products for Agriculture

  • Anderson, Anne J.
    • 식물병연구
    • /
    • 제24권2호
    • /
    • pp.99-112
    • /
    • 2018
  • Certain agrochemicals may be tuned for increased effectiveness when downsized to nanoparticles (NPs), where one dimension is less than 100 nm. The NPs may function as fertilizers, pesticides and products to improve plant health through seed priming, growth promotion, and induction of systemic tolerance to stress. Formulations will allow targeted applications with timed release, reducing waste and pollution when compared to treatments with bulk-size products. The NPs may be a single component, such as nano-ZnO as a fertilizer, or be composites of compatible materials, for example where N, P, and K plus micronutrients are available. The active materials could be loaded into porous carriers or tethered to base nanostructures. Coatings could include such natural products alginate, chitosan, zein, or silica. Certain NPs are taken up and transported in the plant's phloem and xylem so systemic effects are feasible. Timed and targeted release of the active product could be achieved in response to changes in pH or availability of ligands within the plant or the rhizosphere. Global research has revealed the many potentials offered by NP formulations to aid sustainability in agriculture. Current work will provide information needed by regulatory agencies to assess their safety in the agricultural setting.

기능성 나노섬유에 의한 중금속 이온의 제거에 관한 연구 (A Study on the Removal of an Heavy Metal Ions by an Functional Nano Fibers)

  • 안형환
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.57-64
    • /
    • 2004
  • This is the study for the removal of a toxic heavy metal ions and the recycling of expanded polystyrene wastes. Thus expanded polystyrene wastes collected from the packing materials of TV or chemicals and dissolved by $80wt.\%$ solvent(N, N-Dimethylacrylamide), electrospun in DC 20kV by power supply. Generally, the electrospinning is a process of manufacture to the fibers of nanosize from polymer solution. Manufactured nanofiber mats by electrospinning were sulfonated by cone.-sulphuric acid with $Ag_2S_O_4$ catalysts for the exchange capacity of heavy metal ions and the properties of structure with sulfonated time investigated by FESEM(Feild Emission Scaning Electron Microscope). The ion exchange capacity of light metal$(Na^+)$, Cd(II) and Ni(II), and by a nanofiber mats were 1.94[mmo1/g-dry-mat), 1.72(mmol/g-dry-mat), 1.24(mmol/g-dry-mat), respectively., and water uptake content showed a similar trend with IEC. and The selectivity coefficients $K^M_H$ of Cd(II), Ni((II) ions showed 0.324, 0.228. respectively.

저온 플라즈마 발생을 위한 ASM 방식의 펄스파워 발생장치에 관한 연구 (A Study on ASM Pulsed Power Generator for Non-thermal Plasma Applications)

  • 양천석;정용호;김한준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2035-2037
    • /
    • 1999
  • This paper describes an ASM(All Solid-state Modulator) pulsed power generator for non-thermal plasma applications. The proposed generator can produce 20kV, 500A, 100ns pulses at repetition rates up to 10kHz, and it is composed of 30 series connections of power circuit card assembly which contains paralleled MOSFETs, MOSFET drivers, energy storage capacitors and specially designed 1:1 pulse transformer. Higher pulse voltages and currents can easily be obtained by increasing the numbers of series and parallel connections of power circuit card and MOSFETs, respectively. Component layouts are optimized to minimize the leakage inductance and the voltage spikes across switching devices. Especially it put emphasis on the over-current protection (including short circuit) for the reliable operation in real situations. Experimental results show that the proposed pulser is very efficient in air pollution control application and could be useful for other applications such as synthesis of nanosize powders and non-thermal food processing.

  • PDF

Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.237-248
    • /
    • 2018
  • This study presents the investigation of wave dispersion characteristics of a magneto-electro-elastic functionally graded (MEE-FG) nanosize beam utilizing nonlocal strain gradient theory (NSGT). In this theory, a material length scale parameter is propounded to show the influence of strain gradient stress field, and likewise, a nonlocal parameter is nominated to emphasize on the importance of elastic stress field effects. The material properties of heterogeneous nanobeam are supposed to vary smoothly through the thickness direction based on power-law form. Applying Hamilton's principle, the nonlocal governing equations of MEE-FG nanobeam are derived. Furthermore, to derive the wave frequency, phase velocity and escape frequency of MEE-FG nanobeam, an analytical solution is employed. The validation procedure is performed by comparing the results of present model with results exhibited by previous papers. Results are rendered in the framework of an exact parametric study by changing various parameters such as wave number, nonlocal parameter, length scale parameter, gradient index, magnetic potential and electric voltage to show their influence on the wave frequency, phase velocity and escape frequency of MEE-FG nanobeams.

Glycothermal법을 이용한 나노 사이즈 BaTiO3분말의 제조 (Preparation of Nano-size BaTiO3 Powders Using Glycothermal Method)

  • 김병규;임대영;노준석;조승범
    • 한국세라믹학회지
    • /
    • 제39권7호
    • /
    • pp.642-648
    • /
    • 2002
  • 본 연구에서는 TiCl$_4$를 가수분해 시켜 제조한 비정질의 titanium hydrous gel과 Ba(OH)$_2$.8$H_2O$를 출발물질로 사용하였으며, 반응용매로써 1,4-butanediol과 distilled water를 이용하여 나노 사이즈 BaTiO$_3$분말을 제조하였다. 용매로써 사용된 1,4-butanediol과 distilled water의 부피비에 따라 입자의 크기를 조절할 수 있으며, 습식화학법의 단점이었던 분말의 응집을 최소화 시킬 수 있다. 그리고 22$0^{\circ}C$의 비교적 낮은 반응온도에서 분산성이 우수하고, 입도분포가 좁은 약 50~200nm의 barium titanate 나노 분말을 제조하였다.

Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제4권3호
    • /
    • pp.229-249
    • /
    • 2016
  • In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are supposed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. Comparison between results of the present work and those available in literature shows the accuracy of this method. The obtained results are presented for the buckling analysis of the FG nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

나노 준결정상으로 강화된 Ti계 벌크 비정질기지 복합재의 제조 및 기계적 특성 고찰 (Fabrication and Mechanical Properties of Nanoquasicrystalline Phase Reinforced Ti-based Bulk Metallic Glass Matrix Composites)

  • 박진만;임가람;김태응;손성우;김도향
    • 한국주조공학회지
    • /
    • 제28권6호
    • /
    • pp.261-267
    • /
    • 2008
  • In-situ quasicrystalline icosahedral (I) phase reinforced Ti-based bulk metallic glass (BMG) matrix composites have been successfully fabricated by using two distinct thermal histories for BMG forming alloy. The BMG composite containing micron-scale Iphase has been introduced by controlling cooling rate during solidification, whereas nano-scale I-phase reinforced BMG composite has been produced by partial crystallization of BMG. For mechanical properties, micron-scale I-phase distributed BMG composite exhibited lower strength and plasticity compared to the monolithic BMG. On the other hand, nano-scale icosahedral phase embedded BMG composite showed enhanced strength and plasticity. These improved mechanical properties were attributed to the multiplication of shear bands and blocking of the shear band propagation in terms of isolation and homogeneous distribution of nanosize icosahdral phases in the glassy matrix, followed by stabilizing the mechanical and deformation instabilities.

A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium

  • Aissani, Khadidja;Bouiadjra, Mohamed Bachir;Ahouel, Mama;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.743-763
    • /
    • 2015
  • This work presents a new nonlocal hyperbolic shear deformation beam theory for the static, buckling and vibration of nanoscale-beams embedded in an elastic medium. The present model is able to capture both the nonlocal parameter and the shear deformation effect without employing shear correction factor. The nonlocal parameter accounts for the small size effects when dealing with nanosize structures such as nanobeams. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale-beam are obtained using Hamilton's principle. The effect of the surrounding elastic medium on the deflections, critical buckling loads and frequencies of the nanobeam is investigated. Both Winkler-type and Pasternak-type foundation models are used to simulate the interaction of the nanobeam with the surrounding elastic medium. Analytical solutions are presented for a simply supported nanoscale-beam, and the obtained results compare well with those predicted by the other nonlocal theories available in literature.