Fabrication and Mechanical Properties of Nanoquasicrystalline Phase Reinforced Ti-based Bulk Metallic Glass Matrix Composites

나노 준결정상으로 강화된 Ti계 벌크 비정질기지 복합재의 제조 및 기계적 특성 고찰

  • Park, Jin-Man (Leibniz Institute for Solid State and Materials Research Dresden, Institute for Complex Materials) ;
  • Lim, Ka-Ram (Center for Non-crystalline Materials / Dept. of Metallurgical Eng., Yonsei University) ;
  • Kim, Tae-Eung (Center for Non-crystalline Materials / Dept. of Metallurgical Eng., Yonsei University) ;
  • Sohn, Sung-Woo (Center for Non-crystalline Materials / Dept. of Metallurgical Eng., Yonsei University) ;
  • Kim, Do-Hyang (Center for Non-crystalline Materials / Dept. of Metallurgical Eng., Yonsei University)
  • 박진만 ;
  • 임가람 (준결정재료연구단/연세대학교 금속시스템공학과) ;
  • 김태응 (준결정재료연구단/연세대학교 금속시스템공학과) ;
  • 손성우 (준결정재료연구단/연세대학교 금속시스템공학과) ;
  • 김도향 (준결정재료연구단/연세대학교 금속시스템공학과)
  • Published : 2008.11.20

Abstract

In-situ quasicrystalline icosahedral (I) phase reinforced Ti-based bulk metallic glass (BMG) matrix composites have been successfully fabricated by using two distinct thermal histories for BMG forming alloy. The BMG composite containing micron-scale Iphase has been introduced by controlling cooling rate during solidification, whereas nano-scale I-phase reinforced BMG composite has been produced by partial crystallization of BMG. For mechanical properties, micron-scale I-phase distributed BMG composite exhibited lower strength and plasticity compared to the monolithic BMG. On the other hand, nano-scale icosahedral phase embedded BMG composite showed enhanced strength and plasticity. These improved mechanical properties were attributed to the multiplication of shear bands and blocking of the shear band propagation in terms of isolation and homogeneous distribution of nanosize icosahdral phases in the glassy matrix, followed by stabilizing the mechanical and deformation instabilities.

Keywords

References

  1. A. L. Greer : Science, "Metallic glasses", 267 (1995) 1947-1953 https://doi.org/10.1126/science.267.5206.1947
  2. A. P. Tsai, A. Inoue, and T. Masumoto : Jpn. J. of Applied Physics, "Stable quasicrystal in Al-Cu-Fe system", 26 (1987) 1505-1507 https://doi.org/10.1143/JJAP.26.L1505
  3. W. L. Johnson : MRS Bull., "Bulk glass forming-metallic alloys", 24 (1999) 42-56 https://doi.org/10.1557/S0883769400069980
  4. J. F. Loffler : Intermetallics, "Bulk metallic glasses", 11 (2003) 529-540 https://doi.org/10.1016/S0966-9795(03)00046-3
  5. A. Inoue : Acta Mater., "Stabilization of metallic supercooled liquid and bulk amorphous alloys", 48 (2000) 279-306 https://doi.org/10.1016/S1359-6454(99)00300-6
  6. A. S. Argon : Acta Matall., "Plastic deformation in metallic glasses", 27 (1979) 47-51 https://doi.org/10.1016/0001-6160(79)90055-5
  7. A. R. Yavari, J. J. Lewandowski, and J. Eckert : MRS Bull., "Mechanical properties of bulk metallic glasses", 32 (2007) 635-638
  8. C. A. Schuh, T. C. Hufnagel, and U. Ramamurty : Acta Mater., "Mechanical behavior of amorphous alloys", 55 (2007) 4067-4109 https://doi.org/10.1016/j.actamat.2007.01.052
  9. J. M. Park, Y. C. Kim, W. T. Kim, and D. H. Kim : Mater. Trans., "Ti-based bulk metallic glasses with high specific strength", 45 (2004) 595-598 https://doi.org/10.2320/matertrans.45.595
  10. J. M. Park, J. S. Park, D. H. Kim, J-H. Kim, and E. Fleury : J. Mater. Res., "Formation, and mechanical and magnetic properties of bulk ferromagnetic Fe-Nb-B-Y-(Zr, Co) alloys". 21 (2006) 1019-1024 https://doi.org/10.1557/jmr.2006.0126
  11. J. Eckert, J. Das, S. Pauly, and C. Duhamel : J. Mater. Res., "Mechanical properties of bulk metallic glasses and composites", 22 (2007) 285-301 https://doi.org/10.1557/jmr.2007.0050
  12. D. C. Hofmann. J.-Y. Suh. A. Wiest, G. Duan, M.-L.Lind, M. D. Demetriou, W. L. Johnson : Nature, "Designing metallic glass matrix composites with high toughness and tensile ductility", 451 (2008) 1085-1089 https://doi.org/10.1038/nature06598
  13. H. Choi-Yim, R. Busch, U. Koster, and W. L. Johnson : Acta Mater., "Synthesis and characterization of particulate reinforced $Zr_{57}Nb_5Al_{10}Cu_{15.4}Ni_{12.6}$ bulk metallic glass composites", 47 (1999) 2455-2462 https://doi.org/10.1016/S1359-6454(99)00103-2
  14. R. D. Conner, H. Choi-Yim, and W. L. Johnson : J. Mater. Res., "Mechanical properties of $Zr_{57}Nb_5Al_{10}Cu_{15.4}Ni_{12.6}$ metallic glass matrix particulate composites",14 (1999) 3292-3297 https://doi.org/10.1557/JMR.1999.0445
  15. C. P. Kim, R. Busch, A. Masuhr, H. Choi-Yim, and W. L. Johnson : Appl. Phys. Lett., "Processing of carbon-fiberreinforced ZrTiCuNiBe bulk metallic glass composites", 79 (2001) 1456-1458 https://doi.org/10.1063/1.1390317
  16. M. H. Lee, D. H. Bae, D. H. Kim, and D. J. Sordelet : J. Mater. Res., "Synthesis of Ni-based bulk metallic glass matrix composites containing ductile brass phase by warm extrusion of gas atomized powders", 18 (2003) 2101-2108 https://doi.org/10.1557/JMR.2003.0295
  17. D. H. Bae, M. H. Lee, and D. H. Kim, D. J. Sordelet : Appl. Phys. Lett., "Plasticity in $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ metallic glass matrix composites containing brass fibers synthesized by warm extrusion of powders", 83 (2003) 2312-2314 https://doi.org/10.1063/1.1611622
  18. U. Kühn, J. Eckert, N. Mattern, and L. Schultz : Appl. Phys. Lett., "ZrNbCuNiAl bulk metallic glass matrix composites containing dendrite bcc phase precipitates", 80 (2002) 2478-2480 https://doi.org/10.1063/1.1467707
  19. C. Fan, R. T. Ott, and T. C. Hufnagel : Appl. Phys. Lett., "Metallic glass matrix composite with precipitated ductile reinforcement", 81 (2002) 1020-1022 https://doi.org/10.1063/1.1498864
  20. C. C. Hay, C. P. Kim, and W. L. Johnson : Phys. Rev. Lett., "Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in-situ formed ductile phase dendrite dispersions", 84 (2000) 2901-2904 https://doi.org/10.1103/PhysRevLett.84.2901
  21. J. M. Park, D. H. Kim, K. B. Kim, E. Fleruy, M. H. Lee, W. T. Kim, and J. Eckert : J. Mater. Res., "Enhancement of plasticity in Ti-rich Ti-Zr-Be-Cu-Ni-Ta bulk glassy alloy via introducing the structural inhomogeneity", 23 (2008) 2984-2989 https://doi.org/10.1557/jmr.2008.0357
  22. Y. C. Kim, J. H. Na, J. M. Park, D. H. Kim, J. K. Lee, and W. T. Kim : Appl. Phys. Lett., "Role of nanometer-scale quasicrystals in improving the mechanical behavior of Tibased bulk metallic glasses", 83 (2003) 3093-3095 https://doi.org/10.1063/1.1616198
  23. H. Ma, J. Xu, and E. Ma : Appl. Phys. Lett., "Mg-based bulk metallic glass composites with plasticity and high strength", 83 (2003) 2793-2795 https://doi.org/10.1063/1.1616192
  24. J. M. Park, J. S. Park, J-H. Kim, and H. J. Chang : J. Mater. Sci., "Mechanical behaviors of partially devitrified Ti-based bulk metallic glasses", 40 (2005) 4999-5001 https://doi.org/10.1007/s10853-005-1170-1
  25. T. Ohkubo, D. Nagahama, T. Mukai, and K. Hono : J. Mater. Res., "Stres-strain behavior of Ti-based bulk metallic glass and their nanostructure", 22 (2007) 1406-1413 https://doi.org/10.1557/jmr.2007.0180
  26. J. M. Park, H. J. Chang, K. H. Han, W. T. Kim, and D. H. Kim : Scr. Mater., "Enhancement of plasticity in Ti-rich Ti-Zr-Be-Cu-Ni bulk metallic glasses", 53 (2005) 1-6 https://doi.org/10.1016/j.scriptamat.2005.03.024
  27. K. F. Kelton, W. J. Kim, and R. M. Stroud : Appl. Phys. Lett., "A stable Ti-based quasicrystal Applied Physics Letters", 70 (1997) 3230-3232 https://doi.org/10.1063/1.119133
  28. A. M. Viano, R. M. Stroud, P. C. Gibbons, A. F. McDowell, M. S. Conradi, K.F. Kelton : Phys. Rev. B "Hydrogenation of titanium-based quasicrystals", 51 (1995) 12026-12029 https://doi.org/10.1103/PhysRevB.51.12026
  29. D. H. Bae, M. H. Lee, K. T. Kim, W. T. Kim, and D. H. Kim : J. Alloys compd., "Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys", 342 (2002) 445-450 https://doi.org/10.1016/S0925-8388(02)00273-6
  30. P. A. Bancel, P. A. Heiney, P. W. Stephens, A. I. Goldmann, and P. M. Horn : Phys. Rev. Lett., "Structure of rapidly quenched Al-Mn", 54 (1985) 2422-2425 https://doi.org/10.1103/PhysRevLett.54.2422
  31. M. Kusy, U. Kühn, A. Concustell, A. Gebert, J. Das, J. Eckert, L. Schultz, and M. D. Baro : Intermetallics, "Fracture surface morphology of compressed bulk metallic glass-matrixcomposites and bulk metallic glass", 14 (2006) 982-986 https://doi.org/10.1016/j.intermet.2006.01.017
  32. J. Shen, W. Z. Liang, J. F. Sun : Appl. Phys. Lett., "Formation of nanowaves in compressive fracture of a less-brittle bulk metallic glass", 89 (2006) 121908 https://doi.org/10.1063/1.2356083
  33. G. Wang, D. Q. Zhao, H. Y. Bai, M. X. Pan, A. L. Xia, B. S. Han, X. K. Xi, Y. Wu, and W. H. Wang : Phys. Rev. Lett., "Nanoscale Periodic Morphologies on the Fracture Surface of Brittle Metallic Glasses", 98 (2007) 235501 https://doi.org/10.1103/PhysRevLett.98.235501
  34. Z.F. Zhang, F. F. Wu, W. Gao, J. Tan, Z.G. Wang, M. Stoica, J. Das, J. Eckert, B.L. Shen, and A. Inoue : Appl. Phys. Lett., "Wavy cleavage fracture of bulk metallic glass", 89 (2006) 251917 https://doi.org/10.1063/1.2422895